感觉要做出来这个题,需要一定的线代芝士
首先,我们来观察这个柿子。
我们将(B)的权值看作是收益的话,(C)的权值就是花费。
根据矩阵乘法的原理,只有当(a[i]和a[j])都为(1)的时候,才能够获取到(a[i][j])代价,而把(a[i])弄成1,又会付出(c[i])的代价。
那这不就是一个经典的最大全闭合子图模型吗?
我们令(S
ightarrow (i,j))这个坐标对应的点。流量是(b[i][j]),表示割去这个边,就舍弃了(b[i][j])的收益
然后(i
ightarrow t),流量是(c[i]),表示如果这一位是1,要付出(c[i])的代价。
然后((i,j)
ightarrow i,(i,j)
ightarrow j)
流量是(inf)
因为依赖关系没法取消
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 303003;
const int maxm = 2e6+1e2;
const int inf = 1e9;
int point[maxn],nxt[maxm],to[maxm],val[maxm];
int cnt=1,n,m;
int h[maxn];
int b[610][610];
int c[510];
void addedge(int x,int y,int w)
{
nxt[++cnt]=point[x];
to[cnt]=y;
val[cnt]=w;
point[x]=cnt;
}
void insert(int x,int y,int w)
{
addedge(x,y,w);
addedge(y,x,0);
}
int s,t;
queue<int> q;
bool bfs(int s)
{
memset(h,-1,sizeof(h));
h[s]=0;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (h[p]==-1 && val[i]>0)
{
h[p]=h[x]+1;
q.push(p);
}
}
}
//cout<<1<<endl;
if(h[t]==-1) return false;
return true;
}
int dfs(int x,int low)
{
if (x==t ||low==0) return low;
int totflow=0;
for (int i=point[x];i;i=nxt[i])
{
int p=to[i];
if (val[i]>0 &&h[p]==h[x]+1)
{
int tmp = dfs(p,min(low,val[i]));
val[i]-=tmp;
val[i^1]+=tmp;
low-=tmp;
totflow+=tmp;
if (low==0) return totflow;
}
}
if (low>0) h[x]=-1;
return totflow;
}
int dinic()
{
int ans=0;
while (bfs(s))
{
ans=ans+dfs(s,inf);
}
return ans;
}
int main()
{
n=read();
s=maxn-10;
t=s+1;
int sum=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
b[i][j]=read();
sum+=b[i][j];
insert(s,(i-1)*n+j,b[i][j]);
}
for (int i=1;i<=n;i++) c[i]=read(),insert(i+n*n,t,c[i]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
insert((i-1)*n+j,i+n*n,inf);
insert((i-1)*n+j,j+n*n,inf);
}
sum-=dinic();
cout<<sum;
return 0;
}