zoukankan      html  css  js  c++  java
  • AtCoder Grand Contest 017 A

    Problem Statement

    There are N bags of biscuits. The i-th bag contains Ai biscuits.

    Takaki will select some of these bags and eat all of the biscuits inside. Here, it is also possible to select all or none of the bags.

    He would like to select bags so that the total number of biscuits inside is congruent to P modulo 2. How many such ways to select bags there are?

    Constraints

    • 1≤N≤50
    • P=0 or 1
    • 1≤Ai≤100

    Input

    Input is given from Standard Input in the following format:

    N P
    A1 A2 ... AN
    

    Output

    Print the number of ways to select bags so that the total number of biscuits inside is congruent to P modulo 2.


    Sample Input 1

    Copy
    2 0
    1 3
    

    Sample Output 1

    Copy
    2
    

    There are two ways to select bags so that the total number of biscuits inside is congruent to 0 modulo 2:

    • Select neither bag. The total number of biscuits is 0.
    • Select both bags. The total number of biscuits is 4.

    Sample Input 2

    Copy
    1 1
    50
    

    Sample Output 2

    Copy
    0
    

    Sample Input 3

    Copy
    3 0
    1 1 1
    

    Sample Output 3

    Copy
    4
    

    Two bags are distinguished even if they contain the same number of biscuits.


    Sample Input 4

    Copy
    45 1
    17 55 85 55 74 20 90 67 40 70 39 89 91 50 16 24 14 43 24 66 25 9 89 71 41 16 53 13 61 15 85 72 62 67 42 26 36 66 4 87 59 91 4 25 26
    

    Sample Output 4

    Copy
    17592186044416
    题意:数组中选出一些数字,相加求和%2==p,有多少种选取方式,可以一个也不选
    解法:
    1 首先数组统统%2处理
    2 p=0 说明可以选取0 或者偶数个1,那么C(0的总数,选取0的个数)*(1的总数,选取1的个数)
    3 p=1 说明可以选取0加奇数个1,一样的公式
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int num[100];
     4 int p,n;
     5 long long C(int n,int m)
     6 {
     7     if(n<m) return 0;
     8     long long ans=1;
     9     for(int i=0;i<m;i++) ans=ans*(long long)(n-i)/(long long)(i+1);
    10     return ans;
    11 }
    12 long long A(int n,int m)
    13 {
    14     if(n<m) return 0;
    15     long long ans=1;
    16     for(int i=0;i<m;i++) ans*=(long long)(n-i);
    17     return ans;
    18 }
    19 int main(){
    20  
    21     int Numz=0;
    22     int Numo=0;
    23     cin>>n>>p;
    24     for(int i=1;i<=n;i++){
    25         cin>>num[i];
    26         num[i]%=2;
    27         if(num[i]==0){
    28             Numz++;
    29         }else{
    30             Numo++;
    31         }
    32     }
    33     long long ans=0;
    34     if(p==0){
    35         for(int i=0;i<=Numz;i++){
    36             long long pos=C(Numz,i);
    37             for(int j=0;j<=Numo;j+=2){
    38                 long long base=C(Numo,j);
    39                 ans+=(pos*base);
    40             }
    41         }
    42         cout<<ans<<endl;
    43     }else if(p==1){
    44         for(int i=0;i<=Numz;i++){
    45             long long pos=C(Numz,i);
    46             for(int j=1;j<=Numo;j+=2){
    47                 long long base=C(Numo,j);
    48                 ans+=(pos*base);
    49             }
    50         }
    51         cout<<ans<<endl;
    52     }
    53     return 0;
    54 }
  • 相关阅读:
    iOS地图开发
    常用iOS第三方库以及XCode插件介绍
    SDWebImage内部实现过程
    iOS-线程之GCD---之GCD的几种常用常用的方法
    iOS-线程之GCD方式---之同步异步和串行队列并行队列之间的关系
    iOS-获取系统的相册图片
    iOS开发-使用第三方库AFNetWorking解析JSON和XML数据
    iOS_UITableView上拉加载,下拉刷新
    launchImage
    launchImage
  • 原文地址:https://www.cnblogs.com/yinghualuowu/p/7143671.html
Copyright © 2011-2022 走看看