zoukankan      html  css  js  c++  java
  • 毕业设计 python opencv实现车牌识别 界面

    主要代码参考https://blog.csdn.net/wzh191920/article/details/79589506

    GitHub:https://github.com/yinghualuowu

    答辩通过了,补完~

    这里主要是用两种方法进行定位识别

    # -*- coding: utf-8 -*-
    __author__ = '樱花落舞'
    import tkinter as tk
    from tkinter.filedialog import *
    from tkinter import ttk
    import img_function as predict
    import cv2
    from PIL import Image, ImageTk
    import threading
    import time
    import img_math
    import traceback
    import debug
    import config
    from threading import Thread
    
    class ThreadWithReturnValue(Thread):
        def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, *, daemon=None):
            Thread.__init__(self, group, target, name, args, kwargs, daemon=daemon)
            self._return1 = None
            self._return2 = None
            self._return3 = None
        def run(self):
            if self._target is not None:
                self._return1,self._return2,self._return3 = self._target(*self._args, **self._kwargs)
        def join(self):
            Thread.join(self)
            return self._return1,self._return2,self._return3
    
    
    
    
    
    class Surface(ttk.Frame):
        pic_path = ""
        viewhigh = 600
        viewwide = 600
        update_time = 0
        thread = None
        thread_run = False
        camera = None
        color_transform = {"green": ("绿牌", "#55FF55"), "yello": ("黄牌", "#FFFF00"), "blue": ("蓝牌", "#6666FF")}
    
        def __init__(self, win):
            ttk.Frame.__init__(self, win)
            frame_left = ttk.Frame(self)
            frame_right1 = ttk.Frame(self)
            frame_right2 = ttk.Frame(self)
            win.title("车牌识别")
            win.state("zoomed")
            self.pack(fill=tk.BOTH, expand=tk.YES, padx="10", pady="10")
            frame_left.pack(side=LEFT, expand=1, fill=BOTH)
            frame_right1.pack(side=TOP, expand=1, fill=tk.Y)
            frame_right2.pack(side=RIGHT, expand=0)
            ttk.Label(frame_left, text='原图:').pack(anchor="nw")
            ttk.Label(frame_right1, text='形状定位车牌位置:').grid(column=0, row=0, sticky=tk.W)
    
            from_pic_ctl = ttk.Button(frame_right2, text="来自图片", width=20, command=self.from_pic)
            from_vedio_ctl = ttk.Button(frame_right2, text="来自摄像头", width=20, command=self.from_vedio)
            from_img_pre = ttk.Button(frame_right2, text="查看形状预处理图像", width=20,command = self.show_img_pre)
            self.image_ctl = ttk.Label(frame_left)
            self.image_ctl.pack(anchor="nw")
    
            self.roi_ctl = ttk.Label(frame_right1)
            self.roi_ctl.grid(column=0, row=1, sticky=tk.W)
            ttk.Label(frame_right1, text='形状定位识别结果:').grid(column=0, row=2, sticky=tk.W)
            self.r_ctl = ttk.Label(frame_right1, text="",font=('Times','20'))
            self.r_ctl.grid(column=0, row=3, sticky=tk.W)
            self.color_ctl = ttk.Label(frame_right1, text="", width="20")
            self.color_ctl.grid(column=0, row=4, sticky=tk.W)
            from_vedio_ctl.pack(anchor="se", pady="5")
            from_pic_ctl.pack(anchor="se", pady="5")
            from_img_pre.pack(anchor="se", pady="5")
    
            ttk.Label(frame_right1, text='颜色定位车牌位置:').grid(column=0, row=5, sticky=tk.W)
            self.roi_ct2 = ttk.Label(frame_right1)
            self.roi_ct2.grid(column=0, row=6, sticky=tk.W)
            ttk.Label(frame_right1, text='颜色定位识别结果:').grid(column=0, row=7, sticky=tk.W)
            self.r_ct2 = ttk.Label(frame_right1, text="",font=('Times','20'))
            self.r_ct2.grid(column=0, row=8, sticky=tk.W)
            self.color_ct2 = ttk.Label(frame_right1, text="", width="20")
            self.color_ct2.grid(column=0, row=9, sticky=tk.W)
    
            self.predictor = predict.CardPredictor()
            self.predictor.train_svm()
    
        def get_imgtk(self, img_bgr):
            img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
            im = Image.fromarray(img)
            imgtk = ImageTk.PhotoImage(image=im)
            wide = imgtk.width()
            high = imgtk.height()
            if wide > self.viewwide or high > self.viewhigh:
                wide_factor = self.viewwide / wide
                high_factor = self.viewhigh / high
                factor = min(wide_factor, high_factor)
                wide = int(wide * factor)
                if wide <= 0: wide = 1
                high = int(high * factor)
                if high <= 0: high = 1
                im = im.resize((wide, high), Image.ANTIALIAS)
                imgtk = ImageTk.PhotoImage(image=im)
            return imgtk
    
    
    
        def show_roi1(self, r, roi, color):
            if r:
                roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
                roi = Image.fromarray(roi)
                self.imgtk_roi = ImageTk.PhotoImage(image=roi)
                self.roi_ctl.configure(image=self.imgtk_roi, state='enable')
                self.r_ctl.configure(text=str(r))
                self.update_time = time.time()
                try:
                    c = self.color_transform[color]
                    self.color_ctl.configure(text=c[0], background=c[1], state='enable')
                except:
                    self.color_ctl.configure(state='disabled')
            elif self.update_time + 8 < time.time():
                self.roi_ctl.configure(state='disabled')
                self.r_ctl.configure(text="")
                self.color_ctl.configure(state='disabled')
    
        def show_roi2(self, r, roi, color):
            if r:
                roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
                roi = Image.fromarray(roi)
                self.imgtk_roi = ImageTk.PhotoImage(image=roi)
                self.roi_ct2.configure(image=self.imgtk_roi, state='enable')
                self.r_ct2.configure(text=str(r))
                self.update_time = time.time()
                try:
                    c = self.color_transform[color]
                    self.color_ct2.configure(text=c[0], background=c[1], state='enable')
                except:
                    self.color_ct2.configure(state='disabled')
            elif self.update_time + 8 < time.time():
    
                self.roi_ct2.configure(state='disabled')
                self.r_ct2.configure(text="")
                self.color_ct2.configure(state='disabled')
    
        def show_img_pre(self):
    
            filename = config.get_name()
            if filename.any() == True:
                debug.img_show(filename)
    
    
        def from_vedio(self):
            if self.thread_run:
                return
            if self.camera is None:
                self.camera = cv2.VideoCapture(0)
                if not self.camera.isOpened():
                    mBox.showwarning('警告', '摄像头打开失败!')
                    self.camera = None
                    return
            self.thread = threading.Thread(target=self.vedio_thread, args=(self,))
            self.thread.setDaemon(True)
            self.thread.start()
            self.thread_run = True
    
        def from_pic(self):
            self.thread_run = False
            self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg"), ("png图片", "*.png")])
            if self.pic_path:
                img_bgr = img_math.img_read(self.pic_path)
                first_img, oldimg = self.predictor.img_first_pre(img_bgr)
                self.imgtk = self.get_imgtk(img_bgr)
                self.image_ctl.configure(image=self.imgtk)
                th1 = ThreadWithReturnValue(target=self.predictor.img_color_contours,args=(first_img,oldimg))
                th2 = ThreadWithReturnValue(target=self.predictor.img_only_color,args=(oldimg,oldimg,first_img))
                th1.start()
                th2.start()
                r_c, roi_c, color_c = th1.join()
                r_color,roi_color,color_color = th2.join()
                print(r_c,r_color)
    
                self.show_roi2(r_color, roi_color, color_color)
    
                self.show_roi1(r_c, roi_c, color_c)
    
    
        @staticmethod
        def vedio_thread(self):
            self.thread_run = True
            predict_time = time.time()
            while self.thread_run:
                _, img_bgr = self.camera.read()
                self.imgtk = self.get_imgtk(img_bgr)
                self.image_ctl.configure(image=self.imgtk)
                if time.time() - predict_time > 2:
                    r, roi, color = self.predictor(img_bgr)
                    self.show_roi(r, roi, color)
                    predict_time = time.time()
            print("run end")
    
    
    def close_window():
        print("destroy")
        if surface.thread_run:
            surface.thread_run = False
            surface.thread.join(2.0)
        win.destroy()
    
    
    if __name__ == '__main__':
        win = tk.Tk()
    
        surface = Surface(win)
        # close,退出输出destroy
        win.protocol('WM_DELETE_WINDOW', close_window)
        # 进入消息循环
        win.mainloop()

     

  • 相关阅读:
    倒排索引在MYSQL,PostgreSQL,ElasticSearch中的设计思想
    MySQL Group Replication: What Is It? Replicated Database State Machine & Paxos implementation
    Redis 6.0 docker Cluster
    What is the "Docker Subnet" used for?
    Windows MYSQL 8.0 或者 5.7 查找my.ini 修改端口号
    Kerberos Network Authentication Service Window & Mac
    协合新能源集团有限公司 | 红海 eHR BPMN
    基于 springBoot 实现webSocket方式的扫码登录
    Python中IO编程-StringIO和BytesIO
    Neo4j基本入门
  • 原文地址:https://www.cnblogs.com/yinghualuowu/p/9182382.html
Copyright © 2011-2022 走看看