zoukankan      html  css  js  c++  java
  • HBase工程师线上工作经验总结----HBase常见问题及分析

    阅读本文可以带着下面问题:
    1.HBase遇到问题,可以从几方面解决问题?
    2.HBase个别请求为什么很慢?你认为是什么原因?
    3.客户端读写请求为什么大量出错?该从哪方面来分析?
    4.大量服务端exception,一般原因是什么?
    5.系统越来越慢的原因是什么?
    6.Hbase数据写进去,为什么会没有了,可能的原因是什么?
    7. regionserver发生abort,遇到最多是什么情况?
    8.从哪些方面可以判断HBase集群是否健康?
    9.为了加强HBase的安全性,你会采取哪些措施?

    在Tcon分布式系统测试实践的分享中,笔者提到了测试人员参与线上问题分析的必要性:
    1、测试工作中的问题定位提供了大量经验,可以直接应用于线上。
    2、快速的解决问题可以避免大故障的发生。
    3、从线上的问题可以帮助我们准确抓住测试的重点和不足。

    因此在日常的线上维护工作中,积累和很多HBase的问题分析经验,这里于大家分享一下,如有错误和不足请指出。


    问题分析的主要手段
    1、监控系统:首先用于判断系统各项指标是否正常,明确系统目前状况
    2、服务端日志:查看例如region移动轨迹,发生了什么动作,服务端接受处理了哪些客户端请求。
    3、gc日志:gc情况是否正常
    4、操作系统日志和命令:操作系统层面、硬件是否故障,当前状况如何
    5、btrace:实时跟踪目前服务端的请求和处理情况
    6、运维工具:通过内置于系统中的功能,查看服务器实时处理状况
    其实以上手段,大部分系统都具备,不过各有各的用法,下面我会通过常见的问题来梳理这6大手段。

    常见问题1:个别请求为什么很慢?
    个别请求慢是用户遇到最多的问题,首先需要明确是客户端还是服务端原因,进而分析服务端状况以及捕获这些请求来明确定位。
    1、通过客户端日志来初步分析下慢请求的规律,尝试在客户端确定请求的rowkey和操作类型。
    2、确定是不是一段时间内集中出现慢请求,如果是那么可以参考常见问题2来解决。
    3、查看服务端监控,观察响应时间是否平稳,maxResponseTime是否出现峰值。如果存在,那么可以初步确定是服务端问题。
    4、客户端分析无效,可以通过运维工具在服务端捕获慢请求的rowkey和操作类型。
    5、确定rowkey对应的region,初步查看是否存在数据表参数配置不合理(例如version设置过多、blockcache、bloomfilter类型不正确)、storefile过多、命中率过低等问题。
    6、尝试重试这些请求或者直接分析hfile来查看返回结果是否过大,请求是否耗费资源过多。
    7、查看服务端关于hdfs的监控和日志,以及datanode日志,来分析是否存在hdfs块读取慢或者磁盘故障。

    常见问题2:客户端读写请求为什么大量出错?
    读写请求大量出错的现象主要有两类:1、大量出现服务端exception 2、大量超时。其中第一种有异常信息较好判断问题所在。
    1、大量服务端exception一般是region不在线导致的,可能是region在split但是时间很长超过预期,或是meta数据错误导致客户端获取region location错误。以上现象均可通过日志来定位。
    2、遇到大量超时,首先应该排除服务端是否出现了fullgc或者ygc时间过长。前者可能由于内存碎片、cms gc速度来不及导致,后者一般是由于系统使用了swap内存。
    3、通过系统命令和日志来查看是否有机器load过高,磁盘压力过大,磁盘故障。
    4、查看监控是否出现callqueue积压,请求无法得到及时处理,进一步通过call查看工具或者jstack可以查看正在处理的call和进程堆栈信息。
    5、通过datanode日志和hbase访问dfs的时间,来判断问题是否在hdfs层。
    6、查看监控判断是否出现blocking update,memstore是否已接近系统设置的上限。

    常见问题3:系统为什么越来越慢了?
    系统原来挺快的,为什么越来越慢?多数是不合理的服务端配置导致的,可以通过以下几个方面来分析。
    1、磁盘读写和系统load是不是比以前高了,初步判断导致系统变慢的原因。
    2、如果磁盘读写加剧,重点查看flush是否过小,compact是否过频,尤其是major compact是否有必要,从测试结果来看compact产生的磁盘io对系统性能影响很大。
    3、单个region的storefile个数是否有成倍提高
    4、命中率是否有下降趋势
    5、regionserver是否存在region分配不均衡导致的读写集中,或者读写handler的竞争
    6、datablock的本地化率是否出现下降
    7、是否存在datanode运行不正常,可以通过监控查看是否有个别机器读取block时间明显偏高

    常见问题4:数据为什么没了,明明写进去过?
    数据丢失也是HBase的常见bug,分为临时性和永久性两类。临时性的丢失往往是由于hbase本身的正确性问题导致瞬间读取数据错误。永久性丢失一般是日志恢复bug或者region的二次分配。
    1、首先可以通过hbck或者master日志排查丢失的数据所在region是否发生过二次分配
    2、集群中的regionserver是否出现过abort,日志是否正确恢复。
    3、扫描storefile确定目前数据情况
    4、扫描logs或者oldlogs中的文件来确定是否写入过这些数据,以及写入数据的时间,配合rs的日志来确定当时server的行为
    5、根据写入数据的时间,确定regionserver是否正确完成了flush并且将数据写入磁盘

    常见问题5:为什么有服务器进程挂了?
    regionserver发生abort的场景很多,除了系统bug引起的以外,线上遇到最多的就是fullgc引起的zk节点超时和文件系统异常。
    1、查看regionserver日志查询FATAL异常,确定异常类型
    2、查看gc日志确定是否发生fullgc或者ygc时间过长
    3、如果没有征兆,日志突然中断,首先需要考虑是否发生了OOM(0.94版本会直接kill -9)。
    4、可以通过系统内存监控判断是否出现被占满的情况
    5、查看datanode是否出现异常日志,regionserver可能由于roll log或者flush时的文件系统异常导致abort
    6、排除人为调用stop的情况

    HBase健康体检
    一个集群似乎否健康,大体可以从以下几个方面来判断
    1、单region的storefile数量是否合理
    2、memstore是否得到合理的利用,此项指标与hlog的数量和大小相关
    3、compact和flush的流量比值是否合理,如果每天仅flush 1G却要compact几十上百G就是明显的浪费
    4、split似乎否过频,能否采取pre-sharding的方式来预分配region
    5、集群的region是否过多,zk在默认参数下无法支撑12w以上的region个数,并且region过多也会影响regionserver failover的时间
    6、读写相应时间是否合理,datablock的读取延时是否符合预期
    7、flush队列、callqueue长度、compact队列是否符合预期。前两者的积压都会造成系统不稳定。
    8、failedRequest和maxResponseTime
    9、gc状况,过长的ygc和过频的cms都需要警惕

    运维工具
    HBase官方版本的可运维性的确很差,为了能最大限度的保证线上系统安全,快速定位故障原因,阿里做了很多建设性的工作。
    1、建立了完整的监控体系,根据日常测试和线上运行经验,加入了很多监控点。
    2、监控的粒度达到region级别
    3、call dump和线上慢请求追踪功能
    4、btrace脚本体系,出现问题直接运行查看程序内部信息
    5、日志收集和报警
    6、在线表维护工具和storefile、logs分析工具

  • 相关阅读:
    设置MySQL的字符编码
    数据库面试题
    java.lang.IncompatibleClassChangeError: Implementing class
    下载SpringJar包
    使用命令wsimport构建WebService客户端
    java读取.properties配置文件的几种方法
    ELK5.X使用X-Pack配置密码
    Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock'
    MySQL常用命令
    XPath常用定位节点元素语句总结
  • 原文地址:https://www.cnblogs.com/yingjie2222/p/6187783.html
Copyright © 2011-2022 走看看