zoukankan      html  css  js  c++  java
  • hive 基本语法

    本来想讲自己用到的写出来了,结果发现一个比较全面的文章已经介绍过了,那我就不在重新发明轮子了,我也跟着学习一下。 
    转自:http://jeffxie.blog.51cto.com/1365360/317524 

    DDL Operations 
    创建表 
    hive> CREATE TABLE pokes (foo INT, bar STRING); 
    创建表并创建索引字段ds 
    hive> CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING); 
    显示所有表 
    hive> SHOW TABLES; 
    按正条件(正则表达式)显示表, 
    hive> SHOW TABLES '.*s'; 
    表添加一列 
    hive> ALTER TABLE pokes ADD COLUMNS (new_col INT); 
    添加一列并增加列字段注释 
    hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment'); 
    更改表名 
    hive> ALTER TABLE events RENAME TO 3koobecaf; 
    删除列 
    hive> DROP TABLE pokes; 
    元数据存储 
    将文件中的数据加载到表中 
    hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes; 
    加载本地数据,同时给定分区信息 
    hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15'); 
    加载DFS数据 ,同时给定分区信息 
    hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15'); 
    The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous. 
    SQL 操作 
    按先件查询 
    hive> SELECT a.foo FROM invites a WHERE a.ds='<DATE>'; 
    将查询数据输出至目录 
    hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>'; 
    将查询结果输出至本地目录 
    hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a; 
    选择所有列到本地目录 
    hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a; 
    hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100; 
    hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a; 
    hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;
    hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>'; 
    hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a; 
    hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a; 
    将一个表的统计结果插入另一个表中 
    hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar; 
    hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar; 
    JOIN 
    hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo; 
    将多表数据插入到同一表中 
    FROM src 
    INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100 
    INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200 
    INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300 
    INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300; 
    将文件流直接插入文件 
    hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09'; 
    This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples) 
    实际示例 
    创建一个表 
    CREATE TABLE u_data ( 
    userid INT, 
    movieid INT, 
    rating INT, 
    unixtime STRING) 
    ROW FORMAT DELIMITED 
    FIELDS TERMINATED BY ' ' 
    STORED AS TEXTFILE; 
    下载示例数据文件,并解压缩 
    wget http://www.grouplens.org/system/files/ml-data.tar__0.gz 
    tar xvzf ml-data.tar__0.gz 
    加载数据到表中 
    LOAD DATA LOCAL INPATH 'ml-data/u.data' 
    OVERWRITE INTO TABLE u_data; 
    统计数据总量 
    SELECT COUNT(1) FROM u_data; 
    现在做一些复杂的数据分析 
    创建一个 weekday_mapper.py: 文件,作为数据按周进行分割 
    import sys 
    import datetime 
    for line in sys.stdin: 
    line = line.strip() 
    userid, movieid, rating, unixtime = line.split(' ') 
    生成数据的周信息 
    weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() 
    print ' '.join([userid, movieid, rating, str(weekday)]) 
    使用映射脚本 
    //创建表,按分割符分割行中的字段值 
    CREATE TABLE u_data_new ( 
    userid INT, 
    movieid INT, 
    rating INT, 
    weekday INT) 
    ROW FORMAT DELIMITED 
    FIELDS TERMINATED BY ' '; 
    //将python文件加载到系统 
    add FILE weekday_mapper.py; 
    将数据按周进行分割 
    INSERT OVERWRITE TABLE u_data_new 
    SELECT 
    TRANSFORM (userid, movieid, rating, unixtime) 
    USING 'python weekday_mapper.py' 
    AS (userid, movieid, rating, weekday) 
    FROM u_data; 
    SELECT weekday, COUNT(1) 
    FROM u_data_new 
    GROUP BY weekday; 
    处理Apache Weblog 数据 
    将WEB日志先用正则表达式进行组合,再按需要的条件进行组合输入到表中 
    add jar ../build/contrib/hive_contrib.jar; 
    CREATE TABLE apachelog ( 
    host STRING, 
    identity STRING, 
    user STRING, 
    time STRING, 
    request STRING, 
    status STRING, 
    size STRING, 
    referer STRING, 
    agent STRING) 
    ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' 
    WITH SERDEPROPERTIES ( 
    "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|\[[^\]]*\]) ([^ "]*|"[^"]*") (-|[0-9]*) (-|[0-9]*)(?: ([^ "]*|"[^"]*") ([^ "]*|"[^"]*"))?", 
    "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s" 

    STORED AS TEXTFILE;

  • 相关阅读:
    P2519 [HAOI2011]problem a
    P1084 疫情控制
    P1941 飞扬的小鸟
    NOIP填坑计划
    P2831 愤怒的小鸟
    AGC 16 D
    P3960 列队
    Python3爬虫相关软件,库的安装
    软件理论基础—— 第一章命题逻辑系统L
    软件理论基础——导论
  • 原文地址:https://www.cnblogs.com/yingjie2222/p/6249060.html
Copyright © 2011-2022 走看看