写一个函数,输入n,求斐波那契数列(Fibonacci)数列的第n项。斐波那契数列定义如下:
当n=0时,f(n)=0;当n=1时,f(n)=1;当n>1时,f(n)=f(n-1)+f(n-2)。
效率很低的解乏,挑剔的面试官不会喜欢。
public int fibo(int n){ if(n<=0) return 0; if(n==1) return 1; return fibo(n-1)+fibo(n-2); }
我们以求解f(10)为例来分析递归的求解过程。想求得f(10),需要先求的f(9)和f(8)。同样,想求得f(9),需要先求得f(8)和f(7)。我们不难发现在这棵树中有很多节点是重复的,而且重复的节点数会随着n的增大而急剧增加,这意味着计算量会随着n的增大而急剧增大。
面试官期待的实用解法:
首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)...依次类推就可以算出第n项了。算法时间复杂度为O(n)。
public class fibo{ public int getFibo(int n){ int[] result = {0,1}; if(n<2){ return result[n]; } int fibOne = 0; int fibTwo = 1; int fibN=0; for(int i=2;i<=n;i++){ fibN = fibOne + fibTwo; fibOne = fibTwo; fibTwo = fibN; } return fibN; } public static void main(String[] args){ fibo f = new fibo(); int result = f.getFibo(3); System.out.println(result); } }
题目二:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
首先我们考虑最简单的情况。如果只有1级台阶,那显然只有一种跳法,如果有2级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1级;另外一种就是一次跳2级。
接着我们再来讨论一般情况。我们把n级台阶时的跳法看成是n的函数,记为f(n)。当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳一级,此时跳法数目等于后买呢剩下的n-1级台阶的跳法数目,即为f(n-1);另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)。因此n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。分析到这里,我们不难看出这实际上就是菲波纳切数列了。