zoukankan      html  css  js  c++  java
  • PAT甲级——1099 Build A Binary Search Tree (二叉搜索树)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90701125

    1099 Build A Binary Search Tree (30 分)
     

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

    • The left subtree of a node contains only nodes with keys less than the node's key.
    • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
    • Both the left and right subtrees must also be binary search trees.

    Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

    figBST.jpg

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (≤) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index, provided that the nodes are numbered from 0 to N1, and 0 is always the root. If one child is missing, then − will represent the NULL child pointer. Finally Ndistinct integer keys are given in the last line.

    Output Specification:

    For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

    Sample Input:

    9
    1 6
    2 3
    -1 -1
    -1 4
    5 -1
    -1 -1
    7 -1
    -1 8
    -1 -1
    73 45 11 58 82 25 67 38 42
    

    Sample Output:

    58 25 82 11 38 67 45 73 42

    题目大意:将N个数放入一棵定型了的二叉树,使其满足二叉搜索树的性质。

    思路:先将数据Data排好序,二叉树中存放数据的下标就行。

    对于BST中的每个节点,它的key值对应的下标 index = 其上层节点传递过来的 M - 其右子树节点的个数 rightNum。若当前节点是其parent节点的左孩子,这个传递过来的M值就是parent节点的下标;若当前节点是parent节点的右孩子,那么M就是其parent节点的M。根节点的M值为N-1。

     1 #include <iostream>
     2 #include <vector>
     3 #include <queue>
     4 #include <algorithm>
     5 using namespace std;
     6 struct node {
     7     int left, right, 
     8         rightNum,
     9         index;
    10 };
    11 vector <node> tree;
    12 vector <int> Data;
    13 int getNum(int t);
    14 void getIndex(int t, int M);
    15 void levelOrder(int t);
    16 int main()
    17 {
    18     int N;
    19     scanf("%d", &N);
    20     tree.resize(N);
    21     for (int i = 0; i < N; i++)
    22         scanf("%d%d", &tree[i].left, &tree[i].right);
    23     Data.resize(N);
    24     for (int i = 0; i < N; i++)
    25         scanf("%d", &Data[i]);
    26     sort(Data.begin(), Data.end());
    27     getIndex(0, N - 1);
    28     levelOrder(0);
    29     return 0;
    30 }
    31 void levelOrder(int t) {
    32     queue <int> Q;
    33     Q.push(t);
    34     while (!Q.empty()) {
    35         t = Q.front();
    36         Q.pop();
    37         printf("%d", Data[tree[t].index]);
    38         if (tree[t].left != -1)
    39             Q.push(tree[t].left);
    40         if (tree[t].right != -1)
    41             Q.push(tree[t].right);
    42         if (!Q.empty())
    43             printf(" ");
    44     }
    45 }
    46 void getIndex(int t, int M) {
    47     if (t == -1) {
    48         return;
    49     }
    50     tree[t].rightNum = getNum(tree[t].right);
    51     tree[t].index = M - tree[t].rightNum;
    52     getIndex(tree[t].left, tree[t].index - 1);
    53     getIndex(tree[t].right, M);
    54 }
    55 int getNum(int t) {
    56     if (t == -1)
    57         return 0;
    58     return getNum(tree[t].left) + getNum(tree[t].right) + 1;
    59 }
  • 相关阅读:
    POJ 1149
    最小费用最大流邻接表模板
    poj 1724 最短路+优先队列(两个约束条件)
    hdu 4786 最小生成树与最大生成树
    hdu 4081 最小生成树变形
    poj 3228 二分+最大流
    poj 2516 最小费用最大流
    hdu 3605 二分图多重匹配
    hdu 3605 最大流sap+二进制思想(啊啊)
    hdu 3572 最大流判断满流
  • 原文地址:https://www.cnblogs.com/yinhao-ing/p/10950988.html
Copyright © 2011-2022 走看看