zoukankan      html  css  js  c++  java
  • 读convolutional Neural Networks Applied to House Numbers Digit Classification 的收获。

    本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classification 。

    对于房门号的数字识别问题,文中提出的方法是基于卷积神经网络的,卷积神经网络集特征提取与目标分类于一体,这一点有别于传统的识别方法(传统方法中一般都是基于人工设计的特征提取器,然后把提取到的特征输入给分类器)。

    文中在传统的卷积神经网络基础上有两点改进:

    第一:pooling层,传统的方法的pooling层一般都为max pooling 或着 average pooling方法, 而文中采用的方法为:Lp—pooling,这一里,要用到高斯核。具体可以看论文A theoretical analysis of feature pooling in vision algorithms.。

     

    第二点:Multi-stage features。传统方法中一般都是选择把最后一stage的特征输入给分类器,而本文中采用的方法为:把每stage的特征都输入给分类器,这就是MS,而传统的方法为single-stage feature(SS). 在本文听效果不是很明显。

    文中不足点:没有说明文中采用的激活函数为什么啊,即没说说明non-linearity的问题。

    一个重要的资源:EBLearn C++ open-source framework . eblearn.sf.net

  • 相关阅读:
    信息捕获木马运行操作思路
    Linux常用命令清单
    绕过cdn查找真实IP
    kali中文乱码三步解决,简洁高效!
    火狐浏览器控制台的玩法
    k8s pod 权限配置
    Linux运维企业架构实战系列
    企业级自动化运维工具应用实战-ansible
    k8s pod排错指南
    基于Centos7 部署kubernetes v1.21.3 实践(高阶)
  • 原文地址:https://www.cnblogs.com/yinheyi/p/5672889.html
Copyright © 2011-2022 走看看