zoukankan      html  css  js  c++  java
  • opencv: 角点检测源码分析;

    以下6个函数是opencv有关角点检测的函数 ConerHarris, cornoerMinEigenVal,CornorEigenValsAndVecs, preConerDetect, conerSubPix, goodFeaturesToTracks, 其中, 前三个都调用静态函数cornerEigenValsVecs

     

    1、静态函数cornerEigenValsVecs;

    static void
    cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size,
                         int aperture_size, int op_type, double k=0.,
                         int borderType=BORDER_DEFAULT )
    {
    #ifdef HAVE_TEGRA_OPTIMIZATION
        if (tegra::useTegra() && tegra::cornerEigenValsVecs(src, eigenv, block_size, aperture_size, op_type, k, borderType))
            return;
    #endif
    #if CV_TRY_AVX
        bool haveAvx = CV_CPU_HAS_SUPPORT_AVX;
    #endif
    #if CV_SIMD128
        bool haveSimd = hasSIMD128();
    #endif
    
        int depth = src.depth();
        double scale = (double)(1 << ((aperture_size > 0 ? aperture_size : 3) - 1)) * block_size;
        if( aperture_size < 0 )
            scale *= 2.0;
        if( depth == CV_8U )
            scale *= 255.0;
        scale = 1.0/scale;
    
        CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 );
    
        Mat Dx, Dy;
        if( aperture_size > 0 )
        {
            Sobel( src, Dx, CV_32F, 1, 0, aperture_size, scale, 0, borderType );
            Sobel( src, Dy, CV_32F, 0, 1, aperture_size, scale, 0, borderType );
        }
        else
        {
            Scharr( src, Dx, CV_32F, 1, 0, scale, 0, borderType );
            Scharr( src, Dy, CV_32F, 0, 1, scale, 0, borderType );
        }
    
        Size size = src.size();
        Mat cov( size, CV_32FC3 );
        int i, j;
    
        for( i = 0; i < size.height; i++ )
        {
            float* cov_data = cov.ptr<float>(i);
            const float* dxdata = Dx.ptr<float>(i);
            const float* dydata = Dy.ptr<float>(i);
    
    #if CV_TRY_AVX
            if( haveAvx )
                j = cornerEigenValsVecsLine_AVX(dxdata, dydata, cov_data, size.width);
            else
    #endif // CV_TRY_AVX
                j = 0;
    
    #if CV_SIMD128
            if( haveSimd )
            {
                for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes )
                {
                    v_float32x4 v_dx = v_load(dxdata + j);
                    v_float32x4 v_dy = v_load(dydata + j);
    
                    v_float32x4 v_dst0, v_dst1, v_dst2;
                    v_dst0 = v_dx * v_dx;
                    v_dst1 = v_dx * v_dy;
                    v_dst2 = v_dy * v_dy;
    
                    v_store_interleave(cov_data + j * 3, v_dst0, v_dst1, v_dst2);
                }
            }
    #endif // CV_SIMD128
    
            for( ; j < size.width; j++ )
            {
                float dx = dxdata[j];
                float dy = dydata[j];
    
                cov_data[j*3] = dx*dx;
                cov_data[j*3+1] = dx*dy;
                cov_data[j*3+2] = dy*dy;
            }
        }
    
        //盒式均值滤波;
        boxFilter(cov, cov, cov.depth(), Size(block_size, block_size),
            Point(-1,-1), false, borderType );
    
        if( op_type == MINEIGENVAL )
            calcMinEigenVal( cov, eigenv );                    //最小特征值;  如果最小的特征值都满足角点的要求,那么说明是角点,并且是强角点;
        else if( op_type == HARRIS )
            calcHarris( cov, eigenv, k );
        else if( op_type == EIGENVALSVECS )
            calcEigenValsVecs( cov, eigenv );
    }

    2、preConerDetect函数分析;

    preConerDetect: 角点检测的特征图, 利用二阶导数求解角点,二阶导数为零表示角点;

    计算Dx^2Dyy + Dy^2Dxx - 2DxDyDxy

    void cv::preCornerDetect( InputArray _src, OutputArray _dst, int ksize, int borderType )
    {
        CV_INSTRUMENT_REGION()
    
        int type = _src.type();
        CV_Assert( type == CV_8UC1 || type == CV_32FC1 );
    
        CV_OCL_RUN( _src.dims() <= 2 && _dst.isUMat(),
                    ocl_preCornerDetect(_src, _dst, ksize, borderType, CV_MAT_DEPTH(type)))
    
        Mat Dx, Dy, D2x, D2y, Dxy, src = _src.getMat();
        _dst.create( src.size(), CV_32FC1 );
        Mat dst = _dst.getMat();
    
        Sobel( src, Dx, CV_32F, 1, 0, ksize, 1, 0, borderType );
        Sobel( src, Dy, CV_32F, 0, 1, ksize, 1, 0, borderType );
        Sobel( src, D2x, CV_32F, 2, 0, ksize, 1, 0, borderType );
        Sobel( src, D2y, CV_32F, 0, 2, ksize, 1, 0, borderType );
        Sobel( src, Dxy, CV_32F, 1, 1, ksize, 1, 0, borderType );
    
        double factor = 1 << (ksize - 1);
        if( src.depth() == CV_8U )
            factor *= 255;
        factor = 1./(factor * factor * factor);
    #if CV_SIMD128
        float factor_f = (float)factor;
        bool haveSimd = hasSIMD128();
        v_float32x4 v_factor = v_setall_f32(factor_f), v_m2 = v_setall_f32(-2.0f);
    #endif
    
        Size size = src.size();
        int i, j;
        for( i = 0; i < size.height; i++ )
        {
            float* dstdata = dst.ptr<float>(i);
            const float* dxdata = Dx.ptr<float>(i);
            const float* dydata = Dy.ptr<float>(i);
            const float* d2xdata = D2x.ptr<float>(i);
            const float* d2ydata = D2y.ptr<float>(i);
            const float* dxydata = Dxy.ptr<float>(i);
    
            j = 0;
    
    #if CV_SIMD128
            if (haveSimd)
            {
                for( ; j <= size.width - v_float32x4::nlanes; j += v_float32x4::nlanes )
                {
                    v_float32x4 v_dx = v_load(dxdata + j);
                    v_float32x4 v_dy = v_load(dydata + j);
    
                    v_float32x4 v_s1 = (v_dx * v_dx) * v_load(d2ydata + j);
                    v_float32x4 v_s2 = v_muladd((v_dy * v_dy),  v_load(d2xdata + j), v_s1);
                    v_float32x4 v_s3 = v_muladd((v_dy * v_dx) * v_load(dxydata + j), v_m2, v_s2);
    
                    v_store(dstdata + j, v_s3 * v_factor);
                }
            }
    #endif
    
            for( ; j < size.width; j++ )
            {
                float dx = dxdata[j];
                float dy = dydata[j];
                dstdata[j] = (float)(factor*(dx*dx*d2ydata[j] + dy*dy*d2xdata[j] - 2*dx*dy*dxydata[j]));            //计算特征图;
            }
        }
    }

    3、cornorSubPix函数分析;

    角点的真实位置并不一定在整数像素位置,因而为了获取更为精确的角点位置坐标,需要角点坐标达到亚像素级精度;

    原理: https://xueyayang.github.io/pdf_posts/%E4%BA%9A%E5%83%8F%E7%B4%A0%E8%A7%92%E7%82%B9%E7%9A%84%E6%B1%82%E6%B3%95.pdf

    //亚像素级角点检测;
    void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
                           Size win, Size zeroZone, TermCriteria criteria )
    {
        CV_INSTRUMENT_REGION()
    
        const int MAX_ITERS = 100;
        int win_w = win.width * 2 + 1, win_h = win.height * 2 + 1;
        int i, j, k;
        int max_iters = (criteria.type & CV_TERMCRIT_ITER) ? MIN(MAX(criteria.maxCount, 1), MAX_ITERS) : MAX_ITERS;
        double eps = (criteria.type & CV_TERMCRIT_EPS) ? MAX(criteria.epsilon, 0.) : 0;
        eps *= eps; // use square of error in comparsion operations
    
        cv::Mat src = _image.getMat(), cornersmat = _corners.getMat();
        int count = cornersmat.checkVector(2, CV_32F);
        CV_Assert( count >= 0 );
        Point2f* corners = cornersmat.ptr<Point2f>();
    
        if( count == 0 )
            return;
    
        CV_Assert( win.width > 0 && win.height > 0 );
        CV_Assert( src.cols >= win.width*2 + 5 && src.rows >= win.height*2 + 5 );
        CV_Assert( src.channels() == 1 );
    
        Mat maskm(win_h, win_w, CV_32F), subpix_buf(win_h+2, win_w+2, CV_32F);
        float* mask = maskm.ptr<float>();
    
        for( i = 0; i < win_h; i++ )
        {
            float y = (float)(i - win.height)/win.height;
            float vy = std::exp(-y*y);
            for( j = 0; j < win_w; j++ )
            {
                float x = (float)(j - win.width)/win.width;
                mask[i * win_w + j] = (float)(vy*std::exp(-x*x));
            }
        }
    
        // make zero_zone
        if( zeroZone.width >= 0 && zeroZone.height >= 0 &&
            zeroZone.width * 2 + 1 < win_w && zeroZone.height * 2 + 1 < win_h )
        {
            for( i = win.height - zeroZone.height; i <= win.height + zeroZone.height; i++ )
            {
                for( j = win.width - zeroZone.width; j <= win.width + zeroZone.width; j++ )
                {
                    mask[i * win_w + j] = 0;
                }
            }
        }
    
        // do optimization loop for all the points
        for( int pt_i = 0; pt_i < count; pt_i++ )
        {
            Point2f cT = corners[pt_i], cI = cT;
            int iter = 0;
            double err = 0;
    
            do
            {
                Point2f cI2;
                double a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;
    
                getRectSubPix(src, Size(win_w+2, win_h+2), cI, subpix_buf, subpix_buf.type());
                const float* subpix = &subpix_buf.at<float>(1,1);
    
                // process gradient
                for( i = 0, k = 0; i < win_h; i++, subpix += win_w + 2 )
                {
                    double py = i - win.height;
    
                    for( j = 0; j < win_w; j++, k++ )
                    {
                        double m = mask[k];
                        double tgx = subpix[j+1] - subpix[j-1];
                        double tgy = subpix[j+win_w+2] - subpix[j-win_w-2];
                        double gxx = tgx * tgx * m;
                        double gxy = tgx * tgy * m;
                        double gyy = tgy * tgy * m;
                        double px = j - win.width;
    
                        a += gxx;
                        b += gxy;
                        c += gyy;
    
                        bb1 += gxx * px + gxy * py;
                        bb2 += gxy * px + gyy * py;
                    }
                }
    
                double det=a*c-b*b;
                if( fabs( det ) <= DBL_EPSILON*DBL_EPSILON )
                    break;
    
                // 2x2 matrix inversion
                double scale=1.0/det;
                cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);
                cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);
                err = (cI2.x - cI.x) * (cI2.x - cI.x) + (cI2.y - cI.y) * (cI2.y - cI.y);
                cI = cI2;
                if( cI.x < 0 || cI.x >= src.cols || cI.y < 0 || cI.y >= src.rows )
                    break;
            }
            while( ++iter < max_iters && err > eps );
    
            // if new point is too far from initial, it means poor convergence.
            // leave initial point as the result
            if( fabs( cI.x - cT.x ) > win.width || fabs( cI.y - cT.y ) > win.height )
                cI = cT;
    
            corners[pt_i] = cI;
        }
    }

    4、goodFeaturesToTrack函数分析;

     goodFeaturesToTrack是对hariis的一种改进算法---Shi-Tomasi角点检测算子。

    void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
                                  int maxCorners, double qualityLevel, double minDistance,
                                  InputArray _mask, int blockSize,
                                  bool useHarrisDetector, double harrisK )
    {
        CV_INSTRUMENT_REGION()
    
        CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
        CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) );
    
        CV_OCL_RUN(_image.dims() <= 2 && _image.isUMat(),
                   ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
                                        _mask, blockSize, useHarrisDetector, harrisK))
    
        Mat image = _image.getMat(), eig, tmp;
        if (image.empty())
        {
            _corners.release();
            return;
        }
    
        // Disabled due to bad accuracy
        CV_OVX_RUN(false && useHarrisDetector && _mask.empty() &&
                   !ovx::skipSmallImages<VX_KERNEL_HARRIS_CORNERS>(image.cols, image.rows),
                   openvx_harris(image, _corners, maxCorners, qualityLevel, minDistance, blockSize, harrisK))
    
        if( useHarrisDetector )
            cornerHarris( image, eig, blockSize, 3, harrisK );
        else
            cornerMinEigenVal( image, eig, blockSize, 3 );
    
        double maxVal = 0;
        minMaxLoc( eig, 0, &maxVal, 0, 0, _mask );
        threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO );
        dilate( eig, tmp, Mat());
    
        Size imgsize = image.size();
        std::vector<const float*> tmpCorners;
    
        // collect list of pointers to features - put them into temporary image
        Mat mask = _mask.getMat();
        for( int y = 1; y < imgsize.height - 1; y++ )
        {
            const float* eig_data = (const float*)eig.ptr(y);
            const float* tmp_data = (const float*)tmp.ptr(y);
            const uchar* mask_data = mask.data ? mask.ptr(y) : 0;
    
            for( int x = 1; x < imgsize.width - 1; x++ )
            {
                float val = eig_data[x];
                if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) )
                    tmpCorners.push_back(eig_data + x);
            }
        }
    
        std::vector<Point2f> corners;
        size_t i, j, total = tmpCorners.size(), ncorners = 0;
    
        if (total == 0)
        {
            _corners.release();
            return;
        }
    
        std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
    
        if (minDistance >= 1)                            //邻域处理;
        {
             // Partition the image into larger grids
            int w = image.cols;
            int h = image.rows;
    
            const int cell_size = cvRound(minDistance);
            const int grid_width = (w + cell_size - 1) / cell_size;
            const int grid_height = (h + cell_size - 1) / cell_size;
    
            std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
    
            minDistance *= minDistance;
    
            for( i = 0; i < total; i++ )
            {
                int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
                int y = (int)(ofs / eig.step);
                int x = (int)((ofs - y*eig.step)/sizeof(float));
    
                bool good = true;
    
                int x_cell = x / cell_size;
                int y_cell = y / cell_size;
    
                int x1 = x_cell - 1;
                int y1 = y_cell - 1;
                int x2 = x_cell + 1;
                int y2 = y_cell + 1;
    
                // boundary check
                x1 = std::max(0, x1);
                y1 = std::max(0, y1);
                x2 = std::min(grid_width-1, x2);
                y2 = std::min(grid_height-1, y2);
    
                for( int yy = y1; yy <= y2; yy++ )                    //移动;
                {
                    for( int xx = x1; xx <= x2; xx++ )
                    {
                        std::vector <Point2f> &m = grid[yy*grid_width + xx];
    
                        if( m.size() )
                        {
                            for(j = 0; j < m.size(); j++)
                            {
                                float dx = x - m[j].x;
                                float dy = y - m[j].y;
    
                                if( dx*dx + dy*dy < minDistance )    //邻域内有角点的话, 就剔除;        
                                {
                                    good = false;
                                    goto break_out;
                                }
                            }
                        }
                    }
                }
    
                break_out:
    
                if (good)
                {
                    grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
    
                    corners.push_back(Point2f((float)x, (float)y));
                    ++ncorners;
    
                    if( maxCorners > 0 && (int)ncorners == maxCorners )
                        break;
                }
            }
        }
        else
        {
            for( i = 0; i < total; i++ )
            {
                int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
                int y = (int)(ofs / eig.step);
                int x = (int)((ofs - y*eig.step)/sizeof(float));
    
                corners.push_back(Point2f((float)x, (float)y));
                ++ncorners;
                if( maxCorners > 0 && (int)ncorners == maxCorners )
                    break;
            }
        }
    
        Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
    }

    注: 该博文为扩展型;

  • 相关阅读:
    爱福窝在线装修设计软件测评
    关于简书首页模式的思考和畅想
    这些O2O比你们更靠谱儿
    iOS动画——Layer Animations
    最大流, 最小割问题及算法实现
    浅谈iOS学习之路
    iOS架构师之路:慎用继承
    iOS架构师之路:控制器(View Controller)瘦身设计
    IOS中的编码规范
    关闭键盘导致tableView:didSelectRowAtIndexPath:失效解决办法
  • 原文地址:https://www.cnblogs.com/yinwei-space/p/9949552.html
Copyright © 2011-2022 走看看