zoukankan      html  css  js  c++  java
  • 转载 Deep learning:六(regularized logistic回归练习)

    前言:

    在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数。参考的网页资料为:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html。要解决的问题是,给出了具有2个特征的一堆训练数据集,从该数据的分布可以看出它们并不是非常线性可分的,因此很有必要用更高阶的特征来模拟。例如本程序中个就用到了特征值的6次方来求解。

    实验基础:

    contour:

    该函数是绘制轮廓线的,比如程序中的contour(u, v, z, [0, 0], 'LineWidth', 2),指的是在二维平面U-V中绘制曲面z的轮廓,z的值为0,轮廓线宽为2。注意此时的z对应的范围应该与U和V所表达的范围相同。因为contour函数是用来等高线,而本实验中只需画一条等高线,所以第4个参数里面的值都是一样的,这里为[0,0],0指的是函数值z在0和0之间的等高线(很明显,只能是一条)。

    在logistic回归中,其表达式为:

    在此问题中,将特征x映射到一个28维的空间中,其x向量映射后为:

    此时加入了规则项后的系统的损失函数为:

    对应的牛顿法参数更新方程为:

    其中:

    公式中的一些宏观说明(直接截的原网页):

    实验结果:

    原训练数据点的分布情况:

    当lambda=0时所求得的分界曲面:

    当lambda=1时所求得的分界曲面:

    当lambda=10时所求得的分界曲面:

    实验程序代码:

    %载入数据
    clc,clear,close all;
    x = load('ex5Logx.dat');
    y = load('ex5Logy.dat');
    
    %画出数据的分布图
    plot(x(find(y),1),x(find(y),2),'o','MarkerFaceColor','b')
    hold on;
    plot(x(find(y==0),1),x(find(y==0),2),'r+')
    legend('y=1','y=0')
    
    % Add polynomial features to x by 
    % calling the feature mapping function
    % provided in separate m-file
    x = map_feature(x(:,1), x(:,2));
    
    [m, n] = size(x);
    
    % Initialize fitting parameters
    theta = zeros(n, 1);
    
    % Define the sigmoid function
    g = inline('1.0 ./ (1.0 + exp(-z))'); 
    
    % setup for Newton's method
    MAX_ITR = 15;
    J = zeros(MAX_ITR, 1);
    
    % Lambda is the regularization parameter
    lambda = 1;%lambda=0,1,10,修改这个地方,运行3次可以得到3种结果。
    
    % Newton's Method
    for i = 1:MAX_ITR
        % Calculate the hypothesis function
        z = x * theta;
        h = g(z);
        
        % Calculate J (for testing convergence)
        J(i) =(1/m)*sum(-y.*log(h) - (1-y).*log(1-h))+ ...
        (lambda/(2*m))*norm(theta([2:end]))^2;
        
        % Calculate gradient and hessian.
        G = (lambda/m).*theta; G(1) = 0; % extra term for gradient
        L = (lambda/m).*eye(n); L(1) = 0;% extra term for Hessian
        grad = ((1/m).*x' * (h-y)) + G;
        H = ((1/m).*x' * diag(h) * diag(1-h) * x) + L;
        
        % Here is the actual update
        theta = theta - Hgrad;
      
    end
    % Show J to determine if algorithm has converged
    J
    % display the norm of our parameters
    norm_theta = norm(theta) 
    
    % Plot the results 
    % We will evaluate theta*x over a 
    % grid of features and plot the contour 
    % where theta*x equals zero
    
    % Here is the grid range
    u = linspace(-1, 1.5, 200);
    v = linspace(-1, 1.5, 200);
    
    z = zeros(length(u), length(v));
    % Evaluate z = theta*x over the grid
    for i = 1:length(u)
        for j = 1:length(v)
            z(i,j) = map_feature(u(i), v(j))*theta;%这里绘制的并不是损失函数与迭代次数之间的曲线,而是线性变换后的值
        end
    end
    z = z'; % important to transpose z before calling contour
    
    % Plot z = 0
    % Notice you need to specify the range [0, 0]
    contour(u, v, z, [0, 0], 'LineWidth', 2)%在z上画出为0值时的界面,因为为0时刚好概率为0.5,符合要求
    legend('y = 1', 'y = 0', 'Decision boundary')
    title(sprintf('\lambda = %g', lambda), 'FontSize', 14)
    
    
    hold off
    
    % Uncomment to plot J
    % figure
    % plot(0:MAX_ITR-1, J, 'o--', 'MarkerFaceColor', 'r', 'MarkerSize', 8)
    % xlabel('Iteration'); ylabel('J')

    参考文献:

    Deep learning:五(regularized线性回归练习)

    http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html

    作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。

  • 相关阅读:
    遍历frame中的表单:
    java分页算法
    将oracle数据库表使用命令的形式导入到excle文件中 亲测可用!
    关于解决java读取excel文件遇空行抛空指针的问题 !
    对Excle的行和列进行检查 单元格类型转换代码 ;
    java读取xls和xlsx数据作为数据驱动来用
    关于java读取excle文件的相关方法 ;
    转 Maven常用仓库地址以及手动添加jar包到仓库
    Luogo P2324 [SCOI2005]骑士精神
    Luogu P2483 【模板】k短路([SDOI2010]魔法猪学院)
  • 原文地址:https://www.cnblogs.com/yiruparadise/p/5638887.html
Copyright © 2011-2022 走看看