zoukankan      html  css  js  c++  java
  • python基础:迭代器、生成器(yield)详细解读

    1. 迭代器

          迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,知道所有的元素被访问完结束。迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退。

    1.1 使用迭代器的优点

          对于原生支持随机访问的数据结构(如tuple、list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值)。但对于无法随机访问的数据结构(比如set)而言,迭代器是唯一的访问元素的方式。

          另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件,或是斐波那契数列等等。

          迭代器更大的功劳是提供了一个统一的访问集合的接口,只要定义了__iter__()方法对象,就可以使用迭代器访问。

    迭代器有两个基本的方法

    • next方法:返回迭代器的下一个元素
    • __iter__方法:返回迭代器对象本身

    下面用生成斐波那契数列为例子,说明为何用迭代器

    代码1

    复制代码
     def fab(max): 
        n, a, b = 0, 0, 1 
        while n < max: 
            print b 
            a, b = b, a + b 
            n = n + 1
    复制代码

    直接在函数fab(max)中用print打印会导致函数的可复用性变差,因为fab返回None。其他函数无法获得fab函数返回的数列。

    代码2

    复制代码
     def fab(max): 
        L = []
        n, a, b = 0, 0, 1 
        while n < max: 
            L.append(b) 
            a, b = b, a + b 
            n = n + 1
        return L
    复制代码

    代码2满足了可复用性的需求,但是占用了内存空间,最好不要。

    代码3

    对比

     for i in range(1000): pass
     for i in xrange(1000): pass

    前一个返回1000个元素的列表,而后一个在每次迭代中返回一个元素,因此可以使用迭代器来解决复用可占空间的问题

    复制代码
     class Fab(object): 
        def __init__(self, max): 
            self.max = max 
            self.n, self.a, self.b = 0, 0, 1 
    
        def __iter__(self): 
            return self 
    
        def next(self): 
            if self.n < self.max: 
                r = self.b 
                self.a, self.b = self.b, self.a + self.b 
                self.n = self.n + 1 
                return r 
            raise StopIteration()
    复制代码

    执行

    1
    2
    3
    4
    5
    6
    7
    8
    9
    >>> for key in Fabs(5):
        print key
     
         
    1
    1
    2
    3
    5

    Fabs 类通过 next() 不断返回数列的下一个数,内存占用始终为常数  

    1.2 使用迭代器

    使用内建的工厂函数iter(iterable)可以获取迭代器对象:

    1
    2
    3
    4
    >>> lst = range(5)
    >>> it = iter(lst)
    >>> it
    <listiterator object at 0x01A63110>

    使用next()方法可以访问下一个元素:

    1
    2
    3
    4
    5
    6
    >>> it.next()
    0
    >>> it.next()
    1
    >>> it.next()
    2

    python处理迭代器越界是抛出StopIteration异常

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    >>> it.next()
    3
    >>> it.next
    <method-wrapper 'next' of listiterator object at 0x01A63110>
    >>> it.next()
    4
    >>> it.next()
     
    Traceback (most recent call last):
      File "<pyshell#27>", line 1, in <module>
        it.next()
    StopIteration

    了解了StopIteration,可以使用迭代器进行遍历了

    复制代码
    lst = range(5)
    it = iter(lst)
    try:
        while True:
            val = it.next()
            print val
    except StopIteration:
        pass
    复制代码

    结果

    1
    2
    3
    4
    5
    6
    >>>
    0
    1
    2
    3
    4

    事实上,因为迭代器如此普遍,python专门为for关键字做了迭代器的语法糖。在for循环中,Python将自动调用工厂函数iter()获得迭代器,自动调用next()获取元素,还完成了检查StopIteration异常的工作。如下

    复制代码
    >>> a = (1, 2, 3, 4)
    >>> for key in a:
        print key
    
        
    1
    2
    3
    4
    复制代码

    首先python对关键字in后的对象调用iter函数迭代器,然后调用迭代器的next方法获得元素,直到抛出StopIteration异常。

    1.3 定义迭代器

    下面一个例子——斐波那契数列

    复制代码
    # -*- coding: cp936 -*-
    class Fabs(object):
        def __init__(self,max):
            self.max = max
            self.n, self.a, self.b = 0, 0, 1  #特别指出:第0项是0,第1项是第一个1.整个数列从1开始
        def __iter__(self):
            return self
        def next(self):
            if self.n < self.max:
                r = self.b
                self.a, self.b = self.b, self.a + self.b
                self.n = self.n + 1
                return r
            raise StopIteration()
    
    print Fabs(5)
    for key in Fabs(5):
        print key
        
    复制代码

    结果

    1
    2
    3
    4
    5
    6
    <__main__.Fabs object at 0x01A63090>
    1
    1
    2
    3
    5

    2. 生成器

          带有 yield 的函数在 Python 中被称之为 generator(生成器),几个例子说明下(还是用生成斐波那契数列说明)

    可以看出代码3远没有代码1简洁,生成器(yield)既可以保持代码1的简洁性,又可以保持代码3的效果

    代码4 

    复制代码
    def fab(max):
        n, a, b = 0, 0, 1
        while n < max:
            yield b
            a, b = b, a + b
            n = n + 1
    复制代码

    执行

    1
    2
    3
    4
    5
    6
    7
    8
    9
    >>> for n in fab(5):
        print n
     
         
    1
    1
    2
    3
    5

          简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

    也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    >>> f = fab(3)
    >>> f.next()
    1
    >>> f.next()
    1
    >>> f.next()
    2
    >>> f.next()
     
    Traceback (most recent call last):
      File "<pyshell#62>", line 1, in <module>
        f.next()
    StopIteration

    return作用

    在一个生成器中,如果没有return,则默认执行到函数完毕;如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。例如

    1
    2
    3
    4
    5
    6
    7
    8
    9
    >>> s = fab(5)
    >>> s.next()
    1
    >>> s.next()
     
    Traceback (most recent call last):
      File "<pyshell#66>", line 1, in <module>
        s.next()
    StopIteration

    代码5  文件读取

    复制代码
     def read_file(fpath): 
        BLOCK_SIZE = 1024 
        with open(fpath, 'rb') as f: 
            while True: 
                block = f.read(BLOCK_SIZE) 
                if block: 
                    yield block 
                else: 
                    return
    复制代码

    如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取。

     3.列表生成式→生成器

    只要把一个列表生成式的[]改成(),就创建了一个generator:

    1 #列表生成式
    2 li=[x*x for x in range(10) if x%2==0]  #占用内存
    3 
    4 
    5 #生成器
    6 g=(x*x for x in range(10) if x%2==0)
    7 #用for来循环访问,不用考虑异常溢出问题
    8 for i in g:
    9     print(i)
    View Code

    4.迭代器读取文件

    使用迭代器一个显而易见的好处就是:每次只从对象中读取一条数据,不会造成内存的过大开销。

    比如要逐行读取一个文件的内容,利用readlines()方法,我们可以这么写:

    1
    2
    for line in open("test.txt").readlines():
    print line

    这样虽然可以工作,但不是最好的方法。因为他实际上是把文件一次加载到内存中,然后逐行打印。当文件很大时,这个方法的内存开销就很大了。

    利用file的迭代器,我们可以这样写:

    1
    2
    for line in open("test.txt"):   #use file iterators
    print line

    这是最简单也是运行速度最快的写法,他并没显式的读取文件,而是利用迭代器每次读取下一行。

  • 相关阅读:
    JsonParse类
    vs2013提交项目到github
    js选中select
    按每20条分组查询
    批量修改图片格式
    当前日期后10天日期
    C#生成不重复随机数的方法
    接收端通过Request.InputStream读取流
    C#文件流的读写
    C#中HttpWebRequest的用法详解
  • 原文地址:https://www.cnblogs.com/yizhenfeng168/p/6916729.html
Copyright © 2011-2022 走看看