zoukankan      html  css  js  c++  java
  • 题解 P1197 【[JSOI2008]星球大战】

    主要思路:逆向思维

    看到题目,第一个感觉,,,

    连通块???

    我刚学过的搜索呢???深搜广搜都可以啊QwQ!

    但很多人都被困在了这个攻占星球(也就是去点)上。

    如果再仔细看下题目,发现可以离线做这道题。

    那么方法来了:

    我们是不是可以把所有的边存下来,把被攻占的星球的顺序存下来,先把所有两端都没有被攻占的边加上,先求一遍连通块个数。然后反向的加点加边,边加边边求连通块个数,把答案反向存下来,然后正向输出。

    这题结束了(伪)。于是代码如下:

    代码1(20分):

    代码解释在最后的代码中
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <ctime>
    #include <iostream>
    #include <map>
    #include <queue>
    #include <set>
    #include <stack>
    #include <string>
    #include <vector>
    using namespace std;
    #define go(i, j, n, k) for (int i = j; i <= n; i += k)
    #define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
    #define rep(i, x) for (int i = h[x]; i; i = e[i].nxt)
    #define mn 400400
    #define inf 1 << 30
    #define ll long long
    #define ld long double
    #define fi first
    #define se second
    #define root 1, n, 1
    #define lson l, m, rt << 1
    #define rson m + 1, r, rt << 1 | 1
    #define bson l, r, rt
    inline int read(){
        int f = 1, x = 0;char ch = getchar();
        while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
        while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
        return x * f;
    }
    inline void write(int x){
        if (x < 0)putchar('-'),x = -x;
        if (x > 9)write(x / 10);
        putchar(x % 10 + '0');
    }
    //This is AC head above...
    int ans[mn], n, m, k;
    struct edge{
        int v,nxt/*,w*/;
    } e[mn<<1];
    int h[mn],p;
    inline void add(int a,int b/*,int c*/){
        p++;
        e[p].nxt=h[a];
        h[a]=p;
        e[p].v=b;
        //e[p].w=c;
    }
    int usd[mn];
    pair<int, int> ee[mn];
    bool not_alive[mn], vis[mn], not_in[mn];
    void dfs(int x){
        if(vis[x] && !not_alive[x])
            return;
        vis[x] = true;
        rep(i,x){
            if(!vis[e[i].v] && !not_alive[e[i].v])
                dfs(e[i].v);
        }
    }
    int main(){
        n = read();
        m = read();
        go(i,1,m,1){
            ee[i].first = read();
            ee[i].second = read();
        }
        k = read();
        memset(not_alive, false, sizeof(not_alive));
        fo(i,k,1,1){
            usd[i] = read();
            not_alive[usd[i]] = true;
        }
        //cout << "
    ";
        go(i, 1, m, 1){
            if (!not_alive[ee[i].first] && !not_alive[ee[i].second]){
                add(ee[i].first, ee[i].second);
                add(ee[i].second, ee[i].first);
                //cout << "111111111111111" << "
    ";
                //cout << ee[i].first << " " << ee[i].second << "
    ";
            }else{
                not_in[i] = true;
            }
        }
    
        int _ans = 0;
    
        memset(vis, false, sizeof(vis));
        _ans = 0;
        go(i,0,n-1,1){
            if(!vis[i] && !not_alive[i]){
                dfs(i);
                _ans++;
            }
        }
        ans[k + 1] = _ans;
    
        go(i,1,k,1){
            not_alive[usd[i]] = false;
            go(i,1,m,1){
                if(not_in[i]){
                    if(!not_alive[ee[i].first] && !not_alive[ee[i].second]){
                        add(ee[i].first, ee[i].second);
                        add(ee[i].second, ee[i].first);
                        //cout << i << "
    ";
                    }
                }
            }
            memset(vis, false, sizeof(vis));
            _ans = 0;
            go(i,0,n-1,1){
                if(!vis[i] && !not_alive[i]){
                    dfs(i);
                    _ans++;
                    //cout << i << " ";
                }
            }
            ans[k - i + 1] = _ans;
            //cout << "
    ";
        }
    /*
        memset(vis, false, sizeof(vis));
        _ans = 0;
        go(i,0,n-1,1){
            if(!vis[i] && !not_alive[i]){
                dfs(i);
                _ans++;
            }
        }
        cout << "
    
    " << _ans;
    */
        //cout << "
    ";
        go(i,1,k+1,1){
            cout << ans[i] << "
    ";
        }
        return 0;
    }
    
    

    20分???发生了什么???

    TLE怎么办??还有个RE QAQ

    等等,RE是怎么回事?

    是不是栈空间用的太多了??dfs会占用一些栈空间。

    这时我们会想到:并查集

    如果把dfs找连通块改用并查集找连通块,会省下一些栈空间和一些添边的时间

    于是,我们有了:

    代码2(30分)

    代码解释在最后的代码中
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <ctime>
    #include <iostream>
    #include <map>
    #include <queue>
    #include <set>
    #include <stack>
    #include <string>
    #include <vector>
    using namespace std;
    #define go(i, j, n, k) for (int i = j; i <= n; i += k)
    #define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
    #define rep(i, x) for (int i = h[x]; i; i = e[i].nxt)
    #define mn 400400
    #define inf 1 << 30
    #define ll long long
    #define ld long double
    #define fi first
    #define se second
    #define root 1, n, 1
    #define lson l, m, rt << 1
    #define rson m + 1, r, rt << 1 | 1
    #define bson l, r, rt
    inline int read(){
        int f = 1, x = 0;char ch = getchar();
        while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
        while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
        return x * f;
    }
    inline void write(int x){
        if (x < 0)putchar('-'),x = -x;
        if (x > 9)write(x / 10);
        putchar(x % 10 + '0');
    }
    //This is AC head above...
    int n, m, k, usd[mn], ans[mn];
    pair<int, int> ee[mn];
    bool not_alive[mn];
    struct edge{
        int v,nxt/*,w*/;
    } e[mn<<1];
    int h[mn],p;
    inline void add(int a,int b/*,int c*/){
        p++;
        e[p].nxt=h[a];
        h[a]=p;
        e[p].v=b;
        //e[p].w=c;
    }
    int father[mn];
    inline int findx(int x){
        return father[x] == x ? x : father[x] = findx(father[x]);
    }
    inline void mergex(int x,int y){
        int xx = findx(x);
        int yy = findx(y);
        if (xx == yy)
            return;
        srand((unsigned)time(NULL));
        if(rand()%2){
            father[xx] = yy;
        }else{
            father[yy] = xx;
        }
    }
    int main(){
        n = read();
        go(i,1,n,1){
            father[i] = i;
        }
        m = read();
        go(i,1,m,1){
            ee[i].first = read();
            ee[i].second = read();
            add(ee[i].first, ee[i].second);
            add(ee[i].second, ee[i].first);
        }
        k = read();
        memset(not_alive, false, sizeof(not_alive));
        fo(i,k,1,1){
            usd[i] = read();
            not_alive[usd[i]] = true;
        }
        int tot = n - k;
        go(i,1,m,1){
            if(!not_alive[ee[i].first] && !not_alive[ee[i].second]
            && findx(ee[i].first) != findx(ee[i].second)){
                tot--;
                mergex(ee[i].first, ee[i].second);
            }
        }
        ans[k + 1] = tot;
        go(i,1,k,1){
            tot++;
            not_alive[usd[i]] = false;
            go(i,1,m,1){
                if(!not_alive[ee[i].first] && !not_alive[ee[i].second]
                && findx(ee[i].first) != findx(ee[i].second)){
                    tot--;
                    mergex(ee[i].first, ee[i].second);
                }
            }
            ans[k - i + 1] = tot;
        }
        go(i,1,k+1,1){
            cout << ans[i] << "
    ";
        }
        return 0;
    }
    
    

    很好,RE没有了,TLE没有解决。

    我们简单的分析一下可以发现,代码的复杂度是O(k*(n+m))的,,,WA!好大

    我们分析一下我们哪个地方费的时间多。

    对,在添点与找连通块数量上。如何优化这个地方?

    我们可以发现,如果一个图n个点没有边,会有几个连通块??

    是不是有n个?

    如果我们在其中两个点中加一条边的话,是不是连通块数量为n-1个?

    那么我每当一条边加进去时,多了一个点加入一个连通块,那么总的连通块数就会-1?

    这样的话,我们就可以先算出加点之前的连通块数,然后每加一个点,先把连通块数+1,然后看这个点是否可以连入其他连通块中(注:这里只需要把与这个点连接的边枚举出来就可以了),如果可以,连通块数-1,在每次操作后倒序记录连通块数,最后正序输出就好啦!

    于是,我们有了——

    代码3(再不AC这个题解就完了):

     #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <ctime>
    #include <iostream>
    #include <map>
    #include <queue>
    #include <set>
    #include <stack>
    #include <string>
    #include <vector>
    using namespace std;
    #define go(i, j, n, k) for (int i = j; i <= n; i += k)
    #define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
    #define rep(i, x) for (int i = h[x]; i; i = e[i].nxt)
    #define mn 400400
    #define inf 1 << 30
    #define ll long long
    #define ld long double
    #define fi first
    #define se second
    #define root 1, n, 1
    #define lson l, m, rt << 1
    #define rson m + 1, r, rt << 1 | 1
    #define bson l, r, rt
    inline int read(){
        int f = 1, x = 0;char ch = getchar();
        while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
        while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
        return x * f;
    }
    inline void write(int x){
        if (x < 0)putchar('-'),x = -x;
        if (x > 9)write(x / 10);
        putchar(x % 10 + '0');
    }
    //This is AC head above...
    int n, m, k, usd[mn], ans[mn];
    pair<int, int> ee[mn];
    bool not_alive[mn];
    struct edge{
        int v,nxt/*,w*/;
    } e[mn<<1];
    int h[mn],p;
    inline void add(int a,int b/*,int c*/){
        p++;
        e[p].nxt=h[a];
        h[a]=p;
        e[p].v=b;
        //e[p].w=c;
    }
    //链式前向星存图
    int father[mn];
    inline int findx(int x){
        return father[x] == x ? x : father[x] = findx(father[x]);
    }
    inline void mergex(int x,int y){
        int xx = findx(x);
        int yy = findx(y);
        if (xx == yy)
            return;
        srand((unsigned)time(NULL));//随机合并防止毒瘤出题人故意卡深度(自己都不知道会怎么并)
        if(rand()%2){
            father[xx] = yy;
        }else{
            father[yy] = xx;
        }
    }
    //并查集
    int main(){
        n = read();
        go(i,1,n,1){
            father[i] = i;
        }
        m = read();
        go(i,1,m,1){
            ee[i].first = read();//离线判断用
            ee[i].second = read();
            add(ee[i].first, ee[i].second);//存图
            add(ee[i].second, ee[i].first);
        }
        k = read();
        memset(not_alive, false, sizeof(not_alive));//玄学初始化
        fo(i,k,1,1){
            usd[i] = read();//倒序记录被炸的顺序
            not_alive[usd[i]] = true;//记录哪个点 最后被炸掉了
        }
        int tot = n - k;//重点!这里记录目前剩的点数
        go(i,1,m,1){//然后先把存活的点之间的边连上,放到一个集合里,总的连通块数-1
            if(!not_alive[ee[i].first] && !not_alive[ee[i].second]
            && findx(ee[i].first) != findx(ee[i].second)){
                tot--;
                mergex(ee[i].first, ee[i].second);
            }
        }
        ans[k + 1] = tot;
        go(i,1,k,1){
            tot++;
            not_alive[usd[i]] = false;
            for (int j = h[usd[i]]; j; j = e[j].nxt){//枚举与这个点连接的点,看会合并几次,合并几次就会减少几个连通块
                if(!not_alive[e[j].v] && findx(e[j].v) != findx(usd[i])){
                    tot--;
                    mergex(e[j].v, usd[i]);
                }
            }
            ans[k - i + 1] = tot;//倒序存储
        }
        go(i,1,k+1,1){//正序输出
            cout << ans[i] << "
    ";
        }
        return 0;
    }
    
    

    第八次发题解,希望可以帮到那些不知道怎么去点怎么删边的同学

    NOIP2018并不是结束,而是开始
  • 相关阅读:
    逆向随笔
    Test for Required Behavior, Not Incidental Behavior
    Volley 解析
    使用Apache JMeter压測Thrift
    hdu 5289 Assignment(给一个数组,求有多少个区间,满足区间内的最大值和最小值之差小于k)
    ORACLE 11G在存储过程里面遍历游标, 调用job任务定时运行
    Netlink 内核实现分析(二):通信
    6.3 cmath--数学函数
    CodeChef Little Elephant and Mouses [DP]
    BZOJ 1758: [Wc2010]重建计划 [暂时放弃]
  • 原文地址:https://www.cnblogs.com/yizimi/p/10056248.html
Copyright © 2011-2022 走看看