zoukankan      html  css  js  c++  java
  • poj 1390 Blocks (经典区间dp 方块消除)

    Blocks
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 4250   Accepted: 1704

    Description

    Some of you may have played a game called 'Blocks'. There are n blocks in a row, each box has a color. Here is an example: Gold, Silver, Silver, Silver, Silver, Bronze, Bronze, Bronze, Gold. 
    The corresponding picture will be as shown below: 
     
    Figure 1

    If some adjacent boxes are all of the same color, and both the box to its left(if it exists) and its right(if it exists) are of some other color, we call it a 'box segment'. There are 4 box segments. That is: gold, silver, bronze, gold. There are 1, 4, 3, 1 box(es) in the segments respectively. 

    Every time, you can click a box, then the whole segment containing that box DISAPPEARS. If that segment is composed of k boxes, you will get k*k points. for example, if you click on a silver box, the silver segment disappears, you got 4*4=16 points. 

    Now let's look at the picture below: 
     
    Figure 2


    The first one is OPTIMAL. 

    Find the highest score you can get, given an initial state of this game. 

    Input

    The first line contains the number of tests t(1<=t<=15). Each case contains two lines. The first line contains an integer n(1<=n<=200), the number of boxes. The second line contains n integers, representing the colors of each box. The integers are in the range 1~n.

    Output

    For each test case, print the case number and the highest possible score.

    Sample Input

    2
    9
    1 2 2 2 2 3 3 3 1
    1
    1

    Sample Output

    Case 1: 29
    Case 2: 1

    Source



    题意:

    一排有颜色的方块,每次能够消除相邻的颜色同样的块,得分为方块个数的平方。消除后剩下的方块会合并,问如何消除方块使得总得分最大。


    思路:

    黑书原题(p123),合并初始相邻同样的块,得到颜色数组c和相应的长度len,dp[i][j][k]表示i~j区间,与后面k个同样颜色块一起消除得分的最大值(当然k个块的颜色必须与j同样),考虑len[j]和k这一段怎么消除,有两种可能:

    1.单独消除,dp[i][j][k]=dp[i][j-1][0]+(len[j]+k)^2;

    2.和前面的一起消除,如果前面的一起消除的块最后一块为p,那么dp[i][j][k]=dp[i][p][k+len[j]]+dp[p+1][j-1][0]。

    能够依据p和j的颜色同样以及k的范围来优化一下。


    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <string>
    #include <map>
    #include <stack>
    #include <vector>
    #include <set>
    #include <queue>
    #define maxn 205
    #define MAXN 200005
    #define INF 0x3f3f3f3f
    #define mod 1000000007
    #define eps 1e-6
    const double pi=acos(-1.0);
    typedef long long ll;
    using namespace std;
    
    int n,m,ans,tot;
    int a[maxn],c[maxn],len[maxn],pos[maxn],last[maxn];
    int dp[205][205][205],num[maxn][maxn];
    
    void solve()
    {
        int i,j,k,p;
        memset(pos,0,sizeof(pos));
        for(i=1;i<=tot;i++)
        {
            last[i]=pos[c[i]];
            pos[c[i]]=i;
        }
        memset(num,0,sizeof(num));
        for(i=tot;i>=1;i--)
        {
            for(j=1;j<=n;j++)
            {
                if(j==c[i]) num[j][i]=num[j][i+1]+len[i];
                else num[j][i]=num[j][i+1];
            }
        }
        memset(dp,0,sizeof(dp));
        for(int l=1;l<=tot;l++)
        {
            for(i=1;i<=tot;i++)
            {
                j=i+l-1;
                if(j>tot) break ;
                for(k=0;k<=num[c[j]][j+1];k++)
                {
                   dp[i][j][k]=dp[i][j-1][0]+(len[j]+k)*(len[j]+k);
                   for(p=last[j];p>=i;p=last[p])
                   {
                       dp[i][j][k]=max(dp[i][j][k],dp[i][p][len[j]+k]+dp[p+1][j-1][0]);
                   }
                }
            }
        }
        ans=dp[1][tot][0];
    }
    int main()
    {
        int i,j,test,ca=0;
        scanf("%d",&test);
        while(test--)
        {
            scanf("%d",&n);
            for(i=1;i<=n;i++)
            {
                scanf("%d",&a[i]);
            }
            tot=0;
            memset(len,0,sizeof(len));
            for(i=1;i<=n;)
            {
                tot++;
                c[tot]=a[i];
                while(i<=n&&a[i]==c[tot]) i++,len[tot]++;
            }
            solve();
            printf("Case %d: %d
    ",++ca,ans);
        }
        return 0;
    }


  • 相关阅读:
    TFS2017持续发布中调用PowerShell启停远程应用程序
    基于BUI开发Asp.net MVC项目
    WebAPI应用问题整理
    C#多线程顺序依赖执行控制
    TFS下载文件已损坏问题
    Asp.net core中使用Session
    为什么使用.Net Core, Asp.net Core以及部署到云端
    基于微软开发平台构建和使用私有NuGet托管库
    TFS2017代码搜索功能
    [转】[tip] localhost vs. (local) in SQL Server connection strings
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/6820775.html
Copyright © 2011-2022 走看看