zoukankan      html  css  js  c++  java
  • POJ 题目3264 Balanced Lineup(RMQ)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 39046   Accepted: 18291
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    USACO 2007 January Silver

    ac代码

    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #define max(a,b) (a>b?

    a:b) #define min(a,b) (a>b?

    b:a) int minv[50050][20],maxv[50050][20]; int a[50050]; void init(int n) { int i,j,k; for(i=1;i<=n;i++) { maxv[i][0]=minv[i][0]=a[i]; } for(j=1;(1<<j)<=n;j++) { for(k=1;k+(1<<j)-1<=n;k++) { minv[k][j]=min(minv[k][j-1],minv[k+(1<<(j-1))][j-1]); maxv[k][j]=max(maxv[k][j-1],maxv[k+(1<<(j-1))][j-1]); } } } int q_max(int l,int r) { int k=(int)(log((double)(r-l+1))/(log(2.0))); return max(maxv[l][k],maxv[r-(1<<k)+1][k]); } int q_min(int l,int r) { int k=(int)(log((double)(r-l+1))/(log(2.0))); return min(minv[l][k],minv[r-(1<<k)+1][k]); } int main() { int n,m; while(scanf("%d%d",&n,&m)!=EOF) { int i; for(i=1;i<=n;i++) { scanf("%d",&a[i]); } init(n); while(m--) { int l,r; scanf("%d%d",&l,&r); printf("%d ",q_max(l,r)-q_min(l,r)); } } }



  • 相关阅读:
    定位IO瓶颈的方法,iowait低,IO就没有到瓶颈?
    10分钟检查自己的系统性能数据
    netperf使用指南
    如何看内核源码
    xxx
    os.path 模块
    目前中国智能语音产业的格局、现状
    NLP-python 自然语言处理01
    15本经典金融投资著作
    写给步入工作的自己
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/6852223.html
Copyright © 2011-2022 走看看