zoukankan      html  css  js  c++  java
  • HDU-3295-An interesting mobile game(BFS+DFS)

    Problem Description
    XQ,one of the three Sailormoon girls,is usually playing mobile games on the class.Her favorite mobile game is called “The Princess In The Wall”.Now she give you a problem about this game.
    Can you solve it?The following picture show this problem better.

    This game is played on a rectangular area.This area is divided into some equal square grid..There are N rows and M columns.For each grid,there may be a colored square block or nothing.
    Each grid has a number.
    “0” represents this grid have nothing.
    “1” represents this grid have a red square block.
    “2” represents this grid have a blue square block.
    “3” represents this grid have a green square block.
    “4” represents this grid have a yellow square block.

    1. Each step,when you choose a grid have a colored square block, A group of this block and some connected blocks that are the same color would be removed from the board. no matter how many square blocks are in this group.
    2. When a group of blocks is removed, the blocks above those removed ones fall down into the empty space. When an entire column of blocks is removed, all the columns to the right of that column shift to the left to fill the empty columns.

    Now give you the number of the row and column and the data of each grid.You should calculate how many steps can make the entire rectangular area have no colored square blocks at least.
     

    Input
    There are multiple test cases. Each case starts with two positive integer N, M,(N, M <= 6)the size of rectangular area. Then n lines follow, each contains m positive integers X.(0<= X <= 4)It means this grid have a colored square block or nothing.
     

    Output
    Please output the minimum steps.
     

    Sample Input
    5 6 0 0 0 3 4 4 0 1 1 3 3 3 2 2 1 2 3 3 1 1 1 1 3 3 2 2 1 4 4 4
     

    Sample Output
    4
    Hint
    0 0 0 3 4 4 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 3 3 0 0 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 3 3 0 0 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3 3 2 2 2 3 3 0 2 2 2 4 4 0 2 2 0 0 0 0 0 0 0 0 0 0 2 2 1 4 4 4 2 2 4 4 4 0 2 2 4 4 4 0 2 2 2 0 0 0 0 0 0 0 0 0
     

    Author
    B.A.C
     

    Source


    思路:由于方块会越消越少,所以不是必需判重。注意消去之后。上面的会掉下来,假设某一列全为是空的。右边的会往左移。左移的时候注意连续两列为空的情况,尽管数据弱。之前没考虑也AC了。


    #include <stdio.h>
    
    struct{
    int d[6][6],step;
    }que[1000000],t;
    
    int n,m,temp[6][6],nxt[4][2]={{0,1},{1,0},{0,-1},{-1,0}};
    bool vis[6][6];
    
    void dfs(int x,int y,int num)
    {
        for(int i=0;i<4;i++)
        {
            x+=nxt[i][0];
            y+=nxt[i][1];
    
            if(x>=0 && x<n && y>=0 && y<m && !vis[x][y] && temp[x][y]==num)
            {
                vis[x][y]=1;
    
                t.d[x][y]=0;
    
                dfs(x,y,num);
            }
    
            x-=nxt[i][0];
            y-=nxt[i][1];
        }
    }
    
    int main()
    {
        int i,j,k,p,q,top,bottom;
        bool flag;
    
        while(~scanf("%d%d",&n,&m))
        {
            for(i=0;i<n;i++) for(j=0;j<m;j++) scanf("%d",&que[0].d[i][j]);
    
            top=0;
            bottom=1;
    
            que[0].step=0;
    
            while(top<bottom)
            {
                t=que[top];
    
                flag=1;
    
                for(i=0;i<n && flag;i++) for(j=0;j<m && flag;j++) if(t.d[i][j]) flag=0;
    
                if(flag)
                {
                    printf("%d
    ",t.step);
    
                    break;
                }
    
                t.step++;
    
                for(i=0;i<n;i++) for(j=0;j<m;j++) temp[i][j]=t.d[i][j],vis[i][j]=0;
    
                for(i=0;i<n;i++) for(j=0;j<m;j++)
                {
                    if(temp[i][j] && !vis[i][j])
                    {
                        vis[i][j]=1;
    
                        t.d[i][j]=0;
    
                        dfs(i,j,temp[i][j]);
    
                        for(p=n-1;p>=0;p--)//向下移动
                        {
                            for(q=0;q<m;q++)
                            {
                                if(!t.d[p][q])
                                {
                                    for(k=p-1;k>=0;k--)
                                    {
                                        if(t.d[k][q])
                                        {
                                            t.d[p][q]=t.d[k][q];
                                            t.d[k][q]=0;
    
                                            break;
                                        }
                                    }
                                }
                            }
                        }
                        
                        int tt=m-1;
                        while(tt--)//向左移动,注意连续两列都为空的情况。
                        {
                            for(q=0;q<m-1;q++)
                            {
                                for(p=0;p<n;p++) if(t.d[p][q]) break;
    
                                if(p<n) continue;
    
                                for(p=0;p<n;p++)
                                {
                                    t.d[p][q]=t.d[p][q+1];
                                    t.d[p][q+1]=0;
                                }
                            }
                        }
    
                        que[bottom++]=t;
    
                        for(p=0;p<n;p++) for(q=0;q<m;q++) t.d[p][q]=temp[p][q];
                    }
                }
    
                top++;
            }
        }
    }

  • 相关阅读:
    Hibernate中的一对一注解配置
    Hibernate=====HQL实用技术
    Hibernate中的session的线程安全问题
    初学orcale(一)
    initBinder转换日期格式
    poi学习
    jqueryUI学习
    JavaScript中node的相关属性
    JavaScript函数的调用(通过节点)--JavaScript DOM编程艺术
    DOM中的四种方法--Javascript DOM编程艺术
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/6907917.html
Copyright © 2011-2022 走看看