zoukankan      html  css  js  c++  java
  • HDoj-1163- Digital Roots

    Problem Description

    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    The Eddy's easy problem is that : give you the n,want you to find the n^n's digital Roots.

    Input

    The input file will contain a list of positive integers n, one per line. The end of the input will be indicated by an integer value of zero. Notice:For each integer in the input n(n<10000).

    Output

    Output n^n's digital root on a separate line of the output.

    Sample Input

    2
    4
    0
    

    Sample Output

    4
    4
    
    #include<stdio.h>
    #include<string.h>
    int main()
    {
    	int n;
    	while(~scanf("%d",&n),n)
    	{
    		int s=1;
    		for(int i=0;i<n;i++)
    		{
    			s=s*n%9;       //事实上不难发现对9取余更简便。不解释为什么,仅仅能说这是一种规律
    			
    		}
    		if(s==0) 
    		   printf("9
    ");
    		else
    		   printf("%d
    ",s);<pre name="code" class="cpp">
    
    }return 0;}

    #include<cstdio> 
    #include<iostream>
    #include<algorithm>
    using namespace std;
    int sum_dig(int n)
    {
    	int m,sum=0;
    	while(n)
    	{
    		m=n%10;
    		sum+=m;
    		n/=10;
    	}
    	return sum;
    }
    int main()
    {
    	int n;
    	while(~scanf("%d",&n),n)
    	{
    		int s=1;
    		for(int i=0;i<n;i++)
    		{
    		      s=n*sum_dig(s); 
    		}
    		while(s>9)
    		{
    			s=sum_dig(s);
    		}
    		printf("%d
    ",s);
    	}
    	return 0;
    }


    
    
  • 相关阅读:
    libgdx学习记录21——Box2d物理引擎之碰撞Contact、冲量Impulse、关节Joint
    libgdx学习记录20——多线程MultiThread资源处理
    上google的方法
    libgdx学习记录19——图片动态打包PixmapPacker
    libgdx学习记录18——Box2d物理引擎
    libgdx学习记录17——照相机Camera
    libgdx学习记录16——资源加载器AssetManager
    libgdx学习记录15——音乐Music播放
    "_ACFacebookAppIdKey"
    IPhone之模型对象归档
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/7048773.html
Copyright © 2011-2022 走看看