zoukankan      html  css  js  c++  java
  • cf246 ENew Reform (并查集找环)


    Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected by no more than one road. It is not guaranteed that you can get from any city to any other one, using only the existing roads.

    The President of Berland decided to make changes to the road system and instructed the Ministry of Transport to make this reform. Now, each road should be unidirectional (only lead from one city to another).

    In order not to cause great resentment among residents, the reform needs to be conducted so that there can be as few separate cities as possible. A city is considered separate, if no road leads into it, while it is allowed to have roads leading from this city.

    Help the Ministry of Transport to find the minimum possible number of separate cities after the reform.

    Input

    The first line of the input contains two positive integers, n and m — the number of the cities and the number of roads in Berland (2 ≤ n ≤ 100 0001 ≤ m ≤ 100 000).

    Next m lines contain the descriptions of the roads: the i-th road is determined by two distinct integers xi, yi(1 ≤ xi, yi ≤ nxi ≠ yi), where xi and yi are the numbers of the cities connected by the i-th road.

    It is guaranteed that there is no more than one road between each pair of cities, but it is not guaranteed that from any city you can get to any other one, using only roads.

    Output

    Print a single integer — the minimum number of separated cities after the reform.

    Examples
    input
    4 3
    2 1
    1 3
    4 3
    
    output
    1
    
    input
    5 5
    2 1
    1 3
    2 3
    2 5
    4 3
    
    output
    0
    
    input
    6 5
    1 2
    2 3
    4 5
    4 6
    5 6
    
    output
    1
    
    Note

    In the first sample the following road orientation is allowed: .

    The second sample: .

    The third sample: .


    #include<bits/stdc++.h>
    using namespace std;
    const int N = 1e5+10;
    int fa[N];
    bool flag[N];
    int find(int x)
    {
    	int r=x;
    	while(fa[r]!=r) r=fa[r];
    	int i=x,j;
    	while(i!=r) {
    		j=fa[i];
    		fa[i]=r;
    		i=j;
    	}
    	return r;
    } 
    int main()
    { 
    	int n,m,i,j;
    	int x,y,fx,fy;
    	int ans;
    	ans=0;
        scanf("%d%d",&n,&m);
    	for(i=1;i<=n;i++) fa[i]=i;
    	while(m--) {
    		scanf("%d%d",&x,&y);
    		fx=find(x);
    		fy=find(y);
    		if(fx!=fy) {
    			fa[fx]=fy;
    			if(flag[x]||flag[y]||flag[fx]||flag[fy]) 
    			flag[fy]=flag[fx]=flag[x]=flag[y]=true;
    		}
    		else flag[fy]=flag[fx]=flag[x]=flag[y]=true;
    	}
    	for(i=1;i<=n;i++) {
    		if(find(i)==i&&!flag[find(i)]) ans++;
    	}
    	printf("%d
    ",ans);
    	return 0;
    }





  • 相关阅读:
    安装CentOS7
    gitlab的CI/CD实现
    如何实现7*24小时灵活发布?阿里技术团队这么做
    架构整洁之道, 看这一篇就够了!
    什么是数据湖?有什么用?
    2020 云原生 7 大趋势预测
    饿了么交易系统 5 年演化史
    ajax 传参数 数组 会加上中括号
    文件下载
    数组常用方法
  • 原文地址:https://www.cnblogs.com/yjbjingcha/p/7159685.html
Copyright © 2011-2022 走看看