题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1520
Anniversary party
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7637 Accepted Submission(s): 3348
Problem Description
There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor
relation forms a tree rooted at the rector V. E. Tretyakov. In order to make the party funny for every one, the rector does not want both an employee and his or her immediate supervisor to be present. The personnel office has evaluated conviviality of each
employee, so everyone has some number (rating) attached to him or her. Your task is to make a list of guests with the maximal possible sum of guests' conviviality ratings.
Input
Employees are numbered from 1 to N. A first line of input contains a number N. 1 <= N <= 6 000. Each of the subsequent N lines contains the conviviality rating of the corresponding
employee. Conviviality rating is an integer number in a range from -128 to 127. After that go T lines that describe a supervisor relation tree. Each line of the tree specification has the form:
L K
It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line
0 0
L K
It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line
0 0
Output
Output should contain the maximal sum of guests' ratings.
Sample Input
7 1 1 1 1 1 1 1 1 3 2 3 6 4 7 4 4 5 3 5 0 0
Sample Output
5
Source
Recommend
题目大意:n个结点。接下去n行分别表示第i个人具有的活跃值。再输入a,b表示b是a的上司。
题目要求具有直接上司和下属关系的两个人不能同一时候參加party,终于输出让party活跃值最大是多少。
解题思路:用dp[i][j]二维数组来计算。i来表示第几个人,j表示是去或者不去。
dp[i][1]表示第i个參与者參加了,dp[i][0]表示第i个參与者没有參加。
先得出所以子节点的去或者不去的最大值,通过子节点的值得到当前值。
1、上司參加,直属下属就一定不能够參加。
2、上司不參加。直属下属能够參加也能够不參加。
详见代码。
#include <iostream> #include <cstdio> #include <cstring> #include <vector> using namespace std; vector<int>V[6010]; int dp[6010][10]; void Dfs(int root) { int num=V[root].size();//求当前节点下有几个子节点 for (int i=0; i<num; i++) { Dfs(V[root][i]); } for (int i=0; i<num; i++) { dp[root][0]+=max(dp[V[root][i]][0],dp[V[root][i]][1]); dp[root][1]+=dp[V[root][i]][0]; } } int main() { int t,a,b; int val[6010]; int fa[6010]; while (~scanf("%d",&t)) { memset(dp,0,sizeof(dp)); for (int i=1; i<=t; i++) { scanf("%d",&val[i]); V[i].clear(); fa[i]=i; dp[i][1]=val[i]; } while (~scanf("%d%d",&a,&b)) { if (a==0&&b==0) break; fa[a]=b; V[b].push_back(a); } int root=1; while (fa[root]!=root)//找顶点 root=fa[root]; Dfs(root); int ans=max(dp[root][0],dp[root][1]); cout<<ans<<endl; } return 0; } </span>