zoukankan      html  css  js  c++  java
  • Spark算子总结(带案例)

    Spark算子总结(带案例)

    spark算子大致上可分三大类算子:

      1、Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据。

      2、Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据。

      3、Action算子,这类算子会触发SparkContext提交作业。

    一、Value型Transformation算子

    1)map

    val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
    val b = a.map(_.length)
    val c = a.zip(b)
    c.collect
    res0: Array[(String, Int)] = Array((dog,3), (salmon,6), (salmon,6), (rat,3), (elephant,8))

    2)flatMap

    复制代码
    val a = sc.parallelize(1 to 10, 5)
    a.flatMap(1 to _).collect
    res47: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    
    sc.parallelize(List(1, 2, 3), 2).flatMap(x => List(x, x, x)).collect
    res85: Array[Int] = Array(1, 1, 1, 2, 2, 2, 3, 3, 3)
    复制代码

    3)mapPartiions

    val x  = sc.parallelize(1 to 10, 3)
    x.flatMap(List.fill(scala.util.Random.nextInt(10))(_)).collect
    
    res1: Array[Int] = Array(1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10)

    4)glom(形成一个Array数组)

    复制代码
    val a = sc.parallelize(1 to 100, 3)
    a.glom.collect
    res8: Array[Array[Int]] = Array(Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33), Array(34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66), Array(67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100))
    复制代码

    5)union

    val a = sc.parallelize(1 to 3, 1)
    val b = sc.parallelize(5 to 7, 1)
    (a ++ b).collect
    res0: Array[Int] = Array(1, 2, 3, 5, 6, 7)

    6)cartesian(笛卡尔操作)

    val x = sc.parallelize(List(1,2,3,4,5))
    val y = sc.parallelize(List(6,7,8,9,10))
    x.cartesian(y).collect
    res0: Array[(Int, Int)] = Array((1,6), (1,7), (1,8), (1,9), (1,10), (2,6), (2,7), (2,8), (2,9), (2,10), (3,6), (3,7), (3,8), (3,9), (3,10), (4,6), (5,6), (4,7), (5,7), (4,8), (5,8), (4,9), (4,10), (5,9), (5,10))

    7)groupBy(生成相应的key,相同的放在一起)

    val a = sc.parallelize(1 to 9, 3)
    a.groupBy(x => { if (x % 2 == 0) "even" else "odd" }).collect
    res42: Array[(String, Seq[Int])] = Array((even,ArrayBuffer(2, 4, 6, 8)), (odd,ArrayBuffer(1, 3, 5, 7, 9)))

    8)filter

    val a = sc.parallelize(1 to 10, 3)
    val b = a.filter(_ % 2 == 0)
    b.collect
    res3: Array[Int] = Array(2, 4, 6, 8, 10)

    9)distinct(去重)

    val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog", "Gnu", "Rat"), 2)
    c.distinct.collect
    res6: Array[String] = Array(Dog, Gnu, Cat, Rat)

    10)subtract(去掉含有重复的项)

    val a = sc.parallelize(1 to 9, 3)
    val b = sc.parallelize(1 to 3, 3)
    val c = a.subtract(b)
    c.collect
    res3: Array[Int] = Array(6, 9, 4, 7, 5, 8)

    11)sample

    val a = sc.parallelize(1 to 10000, 3)
    a.sample(false, 0.1, 0).count
    res24: Long = 960

    12)takesample

    复制代码
    val x = sc.parallelize(1 to 1000, 3)
    x.takeSample(true, 100, 1)
    res3: Array[Int] = Array(339, 718, 810, 105, 71, 268, 333, 360, 341, 300, 68, 848, 431, 449, 773, 172, 802, 339, 431, 285, 937, 301, 167, 69, 330, 864, 40, 645, 65, 349, 613, 468, 982, 314, 160, 675, 232, 794, 577, 571, 805, 317, 136, 860, 522, 45, 628, 178, 321, 482, 657, 114, 332, 728, 901, 290, 175, 876, 227, 130, 863, 773, 559, 301, 694, 460, 839, 952, 664, 851, 260, 729, 823, 880, 792, 964, 614, 821, 683, 364, 80, 875, 813, 951, 663, 344, 546, 918, 436, 451, 397, 670, 756, 512, 391, 70, 213, 896, 123, 858)
    复制代码

    13)cache、persist

    复制代码
    val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog", "Gnu", "Rat"), 2)
    c.getStorageLevel
    res0: org.apache.spark.storage.StorageLevel = StorageLevel(false, false, false, false, 1)
    c.cache
    c.getStorageLevel
    res2: org.apache.spark.storage.StorageLevel = StorageLevel(false, true, false, true, 1)
    复制代码

    二、Key-Value型Transformation算子

    1)mapValues

    val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
    val b = a.map(x => (x.length, x))
    b.mapValues("x" + _ + "x").collect
    res5: Array[(Int, String)] = Array((3,xdogx), (5,xtigerx), (4,xlionx), (3,xcatx), (7,xpantherx), (5,xeaglex))

    2)combineByKey

    复制代码
    val a = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)
    val b = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3)
    val c = b.zip(a)
    val d = c.combineByKey(List(_), (x:List[String], y:String) => y :: x, (x:List[String], y:List[String]) => x ::: y)
    d.collect
    res16: Array[(Int, List[String])] = Array((1,List(cat, dog, turkey)), (2,List(gnu, rabbit, salmon, bee, bear, wolf)))
    复制代码

    3)reduceByKey

    复制代码
    val a = sc.parallelize(List("dog", "cat", "owl", "gnu", "ant"), 2)
    val b = a.map(x => (x.length, x))
    b.reduceByKey(_ + _).collect
    res86: Array[(Int, String)] = Array((3,dogcatowlgnuant))
    
    val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
    val b = a.map(x => (x.length, x))
    b.reduceByKey(_ + _).collect
    res87: Array[(Int, String)] = Array((4,lion), (3,dogcat), (7,panther), (5,tigereagle))
    复制代码

    4)partitionBy

    (对RDD进行分区操作)

    5)cogroup

    复制代码
    val a = sc.parallelize(List(1, 2, 1, 3), 1)
    val b = a.map((_, "b"))
    val c = a.map((_, "c"))
    b.cogroup(c).collect
    res7: Array[(Int, (Iterable[String], Iterable[String]))] = Array(
    (2,(ArrayBuffer(b),ArrayBuffer(c))),
    (3,(ArrayBuffer(b),ArrayBuffer(c))),
    (1,(ArrayBuffer(b, b),ArrayBuffer(c, c)))
    )
    复制代码

    6)join

    复制代码
    val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
    val b = a.keyBy(_.length)
    val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)
    val d = c.keyBy(_.length)
    b.join(d).collect
    
    res0: Array[(Int, (String, String))] = Array((6,(salmon,salmon)), (6,(salmon,rabbit)), (6,(salmon,turkey)), (6,(salmon,salmon)), (6,(salmon,rabbit)), (6,(salmon,turkey)), (3,(dog,dog)), (3,(dog,cat)), (3,(dog,gnu)), (3,(dog,bee)), (3,(rat,dog)), (3,(rat,cat)), (3,(rat,gnu)), (3,(rat,bee)))
    复制代码

    7)leftOutJoin

    复制代码
    val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
    val b = a.keyBy(_.length)
    val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)
    val d = c.keyBy(_.length)
    b.leftOuterJoin(d).collect
    
    res1: Array[(Int, (String, Option[String]))] = Array((6,(salmon,Some(salmon))), (6,(salmon,Some(rabbit))), (6,(salmon,Some(turkey))), (6,(salmon,Some(salmon))), (6,(salmon,Some(rabbit))), (6,(salmon,Some(turkey))), (3,(dog,Some(dog))), (3,(dog,Some(cat))), (3,(dog,Some(gnu))), (3,(dog,Some(bee))), (3,(rat,Some(dog))), (3,(rat,Some(cat))), (3,(rat,Some(gnu))), (3,(rat,Some(bee))), (8,(elephant,None)))
    复制代码

    8)rightOutJoin

    复制代码
    val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
    val b = a.keyBy(_.length)
    val c = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)
    val d = c.keyBy(_.length)
    b.rightOuterJoin(d).collect
    
    res2: Array[(Int, (Option[String], String))] = Array((6,(Some(salmon),salmon)), (6,(Some(salmon),rabbit)), (6,(Some(salmon),turkey)), (6,(Some(salmon),salmon)), (6,(Some(salmon),rabbit)), (6,(Some(salmon),turkey)), (3,(Some(dog),dog)), (3,(Some(dog),cat)), (3,(Some(dog),gnu)), (3,(Some(dog),bee)), (3,(Some(rat),dog)), (3,(Some(rat),cat)), (3,(Some(rat),gnu)), (3,(Some(rat),bee)), (4,(None,wolf)), (4,(None,bear)))
    复制代码

    三、Actions算子

    1)foreach

    复制代码
    val c = sc.parallelize(List("cat", "dog", "tiger", "lion", "gnu", "crocodile", "ant", "whale", "dolphin", "spider"), 3)
    c.foreach(x => println(x + "s are yummy"))
    lions are yummy
    gnus are yummy
    crocodiles are yummy
    ants are yummy
    whales are yummy
    dolphins are yummy
    spiders are yummy
    复制代码

    2)saveAsTextFile

    val a = sc.parallelize(1 to 10000, 3)
    a.saveAsTextFile("mydata_a")
    14/04/03 21:11:36 INFO FileOutputCommitter: Saved output of task 'attempt_201404032111_0000_m_000002_71' to file:/home/cloudera/Documents/spark-0.9.0-incubating-bin-cdh4/bin/mydata_a

    3)saveAsObjectFile

    复制代码
    val x = sc.parallelize(1 to 100, 3)
    x.saveAsObjectFile("objFile")
    val y = sc.objectFile[Int]("objFile")
    y.collect
    res52: Array[Int] =  Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100)
    复制代码

    4)collect

    val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog", "Gnu", "Rat"), 2)
    c.collect
    res29: Array[String] = Array(Gnu, Cat, Rat, Dog, Gnu, Rat)

    5)collectAsMap

    val a = sc.parallelize(List(1, 2, 1, 3), 1)
    val b = a.zip(a)
    b.collectAsMap
    res1: scala.collection.Map[Int,Int] = Map(2 -> 2, 1 -> 1, 3 -> 3)

    6)reduceByKeyLocally

    val a = sc.parallelize(List("dog", "cat", "owl", "gnu", "ant"), 2)
    val b = a.map(x => (x.length, x))
    b.reduceByKey(_ + _).collect
    res86: Array[(Int, String)] = Array((3,dogcatowlgnuant))

    7)lookup

    val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
    val b = a.map(x => (x.length, x))
    b.lookup(5)
    res0: Seq[String] = WrappedArray(tiger, eagle)

    8)count

    val c = sc.parallelize(List("Gnu", "Cat", "Rat", "Dog"), 2)
    c.count
    res2: Long = 4

    9)top

    val c = sc.parallelize(Array(6, 9, 4, 7, 5, 8), 2)
    c.top(2)
    res28: Array[Int] = Array(9, 8)

    10)reduce

    val a = sc.parallelize(1 to 100, 3)
    a.reduce(_ + _)
    res41: Int = 5050

    11)fold

    val a = sc.parallelize(List(1,2,3), 3)
    a.fold(0)(_ + _)
    res59: Int = 6

    12)aggregate

    复制代码
    val z = sc.parallelize(List(1,2,3,4,5,6), 2)
    
    // lets first print out the contents of the RDD with partition labels
    def myfunc(index: Int, iter: Iterator[(Int)]) : Iterator[String] = {
      iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator
    }
    
    z.mapPartitionsWithIndex(myfunc).collect
    res28: Array[String] = Array([partID:0, val: 1], [partID:0, val: 2], [partID:0, val: 3], [partID:1, val: 4], [partID:1, val: 5], [partID:1, val: 6])
    
    z.aggregate(0)(math.max(_, _), _ + _)
    res40: Int = 9
    复制代码
  • 相关阅读:
    java 集合list遍历时删除元素
    循环中的continue功能
    sql中的!=判断的注意事项
    oracle中时间处理
    judge return character
    ashamed
    char and number transform
    将十进制转化为二进制
    算法和程序
    输入分子和分母,打印出前1000位小数
  • 原文地址:https://www.cnblogs.com/yjd_hycf_space/p/7649673.html
Copyright © 2011-2022 走看看