什么是线程池?为什么要使用线程池?
阶段一、一个医院,每天面对成千上万的病人,处理方式是:来一个病人找来一个医生处理,处理完了医生也走了。当看病时间较短的时候,医生来去的时间,显得尤为费时了。
阶段二、医院引进了线程池的概念。设置门诊,把医生全派出去坐诊,病人来看病先挂号排队,医生根据病人队列顺序依次处理各个病人,这样就省去医生来来去去的时间了。但是,很多时候病人不多,医生却很多导致很多医生空闲浪费水电资源撒。
阶段三、医院引进了可伸缩性线程池的概念,如阶段二,但是门诊一开始只派出了部分医生,但是增加了一个领导,病人依旧是排队看病,领导负责协调整个医院的医生。当病人很多医生忙不过来的时候,领导就去多叫几个医生来帮忙;当病人不多医生太多的时候,领导就叫一些医生回家休息去免得浪费医院资源。
阶段三就是一个线程池的例子。
线程池包括:n个执行任务的线程,一个任务队列,一个管理线程
1、预先启动一些线程,线程负责执行任务队列中的任务,当队列空时,线程挂起。
2、调用的时候,直接往任务队列添加任务,并发信号通知线程队列非空。
3、管理线程负责监控任务队列和系统中的线程状态,当任务队列为空,线程数目多且很多处于空闲的时候,便通知一些线程退出以节约系统资源;当任务队列排队任务多且线程都在忙,便负责再多启动一些线程来执行任务,以确保任务执行效率。
代码:如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
# include <stdlib.h> # include <pthread.h> # include <unistd.h> # include <assert.h> # include <stdio.h> # include <string.h> # include <signal.h> # include <errno.h> # include "threadpool.h" #define DEFAULT_TIME 10 // 领导定时检查队列、线程状态的时间间隔 #define MIN_WAIT_TASK_NUM 10 // 队列中等待的任务数>这个值,便会增加线程 #define DEFAULT_THREAD_VARY 10 //每次线程加减的数目 typedef struct { void *(* function )( void *); void *arg; } threadpool_task_t; struct threadpool_t { pthread_mutex_t lock; // mutex for the taskpool pthread_mutex_t thread_counter; //mutex for count the busy thread pthread_cond_t queue_not_full; pthread_cond_t queue_not_empty; //任务队列非空的信号 pthread_t *threads; //执行任务的线程 pthread_t adjust_tid; //负责管理线程数目的线程 threadpool_task_t *task_queue; //任务队列 int min_thr_num; int max_thr_num; int live_thr_num; int busy_thr_num; int wait_exit_thr_num; int queue_front; int queue_rear; int queue_size; int queue_max_size; bool shutdown; }; /** * @function void *threadpool_thread(void *threadpool) * @desc the worker thread * @param threadpool the pool which own the thread */ void *threadpool_thread( void *threadpool); /** * @function void *adjust_thread(void *threadpool); * @desc manager thread * @param threadpool the threadpool */ void *adjust_thread( void *threadpool); /** * check a thread is alive */ bool is_thread_alive(pthread_t tid); int threadpool_free(threadpool_t *pool); //创建线程池 threadpool_t *threadpool_create( int min_thr_num, int max_thr_num, int queue_max_size) { threadpool_t *pool = NULL; do { if ((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) { printf( "malloc threadpool fail" ); break ; } pool->min_thr_num = min_thr_num; pool->max_thr_num = max_thr_num; pool->busy_thr_num = 0 ; pool->live_thr_num = min_thr_num; pool->queue_size = 0 ; pool->queue_max_size = queue_max_size; pool->queue_front = 0 ; pool->queue_rear = 0 ; pool->shutdown = false ; pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num); if (pool->threads == NULL) { printf( "malloc threads fail" ); break ; } memset(pool->threads, 0 , sizeof(pool->threads)); pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size); if (pool->task_queue == NULL) { printf( "malloc task_queue fail" ); break ; } if (pthread_mutex_init(&(pool->lock), NULL) != 0 || pthread_mutex_init(&(pool->thread_counter), NULL) != 0 || pthread_cond_init(&(pool->queue_not_empty), NULL) != 0 || pthread_cond_init(&(pool->queue_not_full), NULL) != 0 ) { printf( "init the lock or cond fail" ); break ; } /** * start work thread min_thr_num */ for ( int i = 0 ; i < min_thr_num; i++) { //启动任务线程 pthread_create(&(pool->threads[i]), NULL, threadpool_thread, ( void *)pool); printf( "start thread 0x%x...
" , pool->threads[i]); } //启动管理线程 pthread_create(&(pool->adjust_tid), NULL, adjust_thread, ( void *)pool); return pool; } while ( 0 ); threadpool_free(pool); return NULL; } //把任务添加到队列中 int threadpool_add(threadpool_t *pool, void *(* function )( void *arg), void *arg) { assert(pool != NULL); assert( function != NULL); assert(arg != NULL); pthread_mutex_lock(&(pool->lock)); //队列满的时候,等待 while ((pool->queue_size == pool->queue_max_size) && (!pool->shutdown)) { //queue full wait pthread_cond_wait(&(pool->queue_not_full), &(pool->lock)); } if (pool->shutdown) { pthread_mutex_unlock(&(pool->lock)); } //如下是添加任务到队列,使用循环队列 if (pool->task_queue[pool->queue_rear].arg != NULL) { free(pool->task_queue[pool->queue_rear].arg); pool->task_queue[pool->queue_rear].arg = NULL; } pool->task_queue[pool->queue_rear]. function = function ; pool->task_queue[pool->queue_rear].arg = arg; pool->queue_rear = (pool->queue_rear + 1 )%pool->queue_max_size; pool->queue_size++; //每次加完任务,发个信号给线程 //若没有线程处于等待状态,此句则无效,但不影响 pthread_cond_signal(&(pool->queue_not_empty)); pthread_mutex_unlock(&(pool->lock)); return 0 ; } //线程执行任务 void *threadpool_thread( void *threadpool) { threadpool_t *pool = (threadpool_t *)threadpool; threadpool_task_t task; while ( true ) { /* Lock must be taken to wait on conditional variable */ pthread_mutex_lock(&(pool->lock)); //任务队列为空的时候,等待 while ((pool->queue_size == 0 ) && (!pool->shutdown)) { printf( "thread 0x%x is waiting
" , pthread_self()); pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock)); //被唤醒后,判断是否是要退出的线程 if (pool->wait_exit_thr_num > 0 ) { pool->wait_exit_thr_num--; if (pool->live_thr_num > pool->min_thr_num) { printf( "thread 0x%x is exiting
" , pthread_self()); pool->live_thr_num--; pthread_mutex_unlock(&(pool->lock)); pthread_exit(NULL); } } } if (pool->shutdown) { pthread_mutex_unlock(&(pool->lock)); printf( "thread 0x%x is exiting
" , pthread_self()); pthread_exit(NULL); } //get a task from queue task. function = pool->task_queue[pool->queue_front]. function ; task.arg = pool->task_queue[pool->queue_front].arg; pool->queue_front = (pool->queue_front + 1 )%pool->queue_max_size; pool->queue_size--; //now queue must be not full pthread_cond_broadcast(&(pool->queue_not_full)); pthread_mutex_unlock(&(pool->lock)); // Get to work printf( "thread 0x%x start working
" , pthread_self()); pthread_mutex_lock(&(pool->thread_counter)); pool->busy_thr_num++; pthread_mutex_unlock(&(pool->thread_counter)); (*(task. function ))(task.arg); // task run over printf( "thread 0x%x end working
" , pthread_self()); pthread_mutex_lock(&(pool->thread_counter)); pool->busy_thr_num--; pthread_mutex_unlock(&(pool->thread_counter)); } pthread_exit(NULL); return (NULL); } //管理线程 void *adjust_thread( void *threadpool) { threadpool_t *pool = (threadpool_t *)threadpool; while (!pool->shutdown) { sleep(DEFAULT_TIME); pthread_mutex_lock(&(pool->lock)); int queue_size = pool->queue_size; int live_thr_num = pool->live_thr_num; pthread_mutex_unlock(&(pool->lock)); pthread_mutex_lock(&(pool->thread_counter)); int busy_thr_num = pool->busy_thr_num; pthread_mutex_unlock(&(pool->thread_counter)); //任务多线程少,增加线程 if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) { //need add thread pthread_mutex_lock(&(pool->lock)); int add = 0 ; for ( int i = 0 ; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY && pool->live_thr_num < pool->max_thr_num; i++) { if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) { pthread_create(&(pool->threads[i]), NULL, threadpool_thread, ( void *)pool); add++; pool->live_thr_num++; } } pthread_mutex_unlock(&(pool->lock)); } //任务少线程多,减少线程 if ((busy_thr_num * 2 ) < live_thr_num && live_thr_num > pool->min_thr_num) { //need del thread pthread_mutex_lock(&(pool->lock)); pool->wait_exit_thr_num = DEFAULT_THREAD_VARY; pthread_mutex_unlock(&(pool->lock)); //wake up thread to exit for ( int i = 0 ; i < DEFAULT_THREAD_VARY; i++) { pthread_cond_signal(&(pool->queue_not_empty)); } } } } int threadpool_destroy(threadpool_t *pool) { if (pool == NULL) { return - 1 ; } pool->shutdown = true ; //adjust_tid exit first pthread_join(pool->adjust_tid, NULL); // wake up the waiting thread pthread_cond_broadcast(&(pool->queue_not_empty)); for ( int i = 0 ; i < pool->min_thr_num; i++) { pthread_join(pool->threads[i], NULL); } threadpool_free(pool); return 0 ; } int threadpool_free(threadpool_t *pool) { if (pool == NULL) { return - 1 ; } if (pool->task_queue) { free(pool->task_queue); } if (pool->threads) { free(pool->threads); pthread_mutex_lock(&(pool->lock)); pthread_mutex_destroy(&(pool->lock)); pthread_mutex_lock(&(pool->thread_counter)); pthread_mutex_destroy(&(pool->thread_counter)); pthread_cond_destroy(&(pool->queue_not_empty)); pthread_cond_destroy(&(pool->queue_not_full)); } free(pool); pool = NULL; return 0 ; } int threadpool_all_threadnum(threadpool_t *pool) { int all_threadnum = - 1 ; pthread_mutex_lock(&(pool->lock)); all_threadnum = pool->live_thr_num; pthread_mutex_unlock(&(pool->lock)); return all_threadnum; } int threadpool_busy_threadnum(threadpool_t *pool) { int busy_threadnum = - 1 ; pthread_mutex_lock(&(pool->thread_counter)); busy_threadnum = pool->busy_thr_num; pthread_mutex_unlock(&(pool->thread_counter)); return busy_threadnum; } bool is_thread_alive(pthread_t tid) { int kill_rc = pthread_kill(tid, 0 ); if (kill_rc == ESRCH) { return false ; } return true ; } // for test //void *process(void *arg) //{ //printf("thread 0x%x working on task %d
",pthread_self(),*(int *)arg); //sleep(1); //printf("task %d is end
",*(int *)arg); //return NULL; //} //int main() //{ //threadpool_t *thp = threadpool_create(3,100,12); //printf("pool inited"); // //int *num = (int *)malloc(sizeof(int)*20); //for (int i=0;i<10;i++) //{ //num[i]=i; //printf("add task %d
",i); //threadpool_add(thp,process,(void*)&num[i]); //} //sleep(10); //threadpool_destroy(thp); //} |