zoukankan      html  css  js  c++  java
  • 《DenseNet Models for Tiny ImageNet Classification》课程设计论文

    paper : 《DenseNet Models for Tiny ImageNet Classification》     https://arxiv.org/ftp/arxiv/papers/1904/1904.10429.pdf

    code: https://github.com/ZohebAbai/Tiny-ImageNet-Challenge

    这个文章应该是课程作业。

    论文的主要目的就是完成一个分类器,在mini imagenet上。

    主要仿照ResNet 和Densenet 设计了一个分类器。

    数据使用了64*64的mini imagenet,数据增强方法使用了imgaug library :https://github.com/aleju/imgaug  这个可以记录下

           就是设计了这样两个网络

    分析分类错误的原因:

    1. 低分辨率(一些细节丢失)   

    2.对图像中主要实体的错误理解(存在多个实体,比如果盘里有水果,应该是分类为果盘呢?还是某种水果呢)

    3.相似类别间的混乱(例如:相似品种间的猫)

    分类正确的情形:

    前景和背景容易区分

    前景占的空间比率大

    数据增强对电线杆,旗杆这种竖长的有效果。

    此外,提供了不少入门者可以操练数据地址:

    mini imagenet:  https://tiny-imagenet.herokuapp.com/

  • 相关阅读:
    ruby 类库组成
    ruby 数据类型Number
    ruby require的使用
    ruby $LOAD_PATH及类加载
    ruby编码说明
    RubyMine常用快捷键
    基础
    基础
    基础
    基础
  • 原文地址:https://www.cnblogs.com/yjphhw/p/10762406.html
Copyright © 2011-2022 走看看