zoukankan      html  css  js  c++  java
  • 59.Target Sum(目标和)

    Level:

      Medium

    题目描述:

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

    Find out how many ways to assign symbols to make sum of integers equal to target S.

    Example 1:

    Input: nums is [1, 1, 1, 1, 1], S is 3. 
    Output: 5
    Explanation: 
    
    -1+1+1+1+1 = 3
    +1-1+1+1+1 = 3
    +1+1-1+1+1 = 3
    +1+1+1-1+1 = 3
    +1+1+1+1-1 = 3
    
    There are 5 ways to assign symbols to make the sum of nums be target 3.
    

    Note:

    1. The length of the given array is positive and will not exceed 20.
    2. The sum of elements in the given array will not exceed 1000.
    3. Your output answer is guaranteed to be fitted in a 32-bit integer.

    思路分析:

      题意是让在一个数组中的一些数之前添加“+”,其它的数之前添加“-”,从而让数组之和达到给定的数。

      我们将添加“+”的数放入集合P,其它的数放入集合N,于是我们有:

    sum(P) - sum(N) = target
    sum(P) + sum(N) = sum
    

      于是有sum(P) = (target + sum) / 2,那么不妨这样理解题意,从一个数组中选定一些数,使它们的和为sum(P),如此就变成了很经典的0/1背包问题,从一个n大小的背包中选出总和为sum(P)的方案个数。

      状态表示:dp[i] [j]代表前i个数中和为j的方案个数。
      状态转移方程:dp[i] [j] = dp[i-1] [j] + dp[i-1] [j-nums[i]],dp[0] [0] = 1
      返回结果:dp[n] [target],n为数组大小,target为sum(P)。

      如此时间复杂度为O(N^2),空间复杂度为O(M*N)。

    代码:

    public class Solution{
        public int findTargetSumWays(int[] nums, int S){
            int sum=0;
            for(int i=0;i<nums.length;i++){
                sum=sum+nums[i];
            }
            if(sum<S||S<-sum)
                return 0;
            int target=(sum+S)/2;
            int []dp=new int [target+1]; //dp[i]表示和为 i的方案数。
            dp[0]=1;
            for(int i=0;i<nums.length;i++){
                for(int j=target;j>=nums[i];j--){
                    dp[j]=dp[j]+dp[j-nums[i]];
                }
            }
            return dp[target];
        }
    }
    
  • 相关阅读:
    shell脚本按当前日期输出日志
    bat弹出确认或取消窗口
    bat脚本输出日志
    北京浩赢科技有限公司与好宝多多
    bat延迟执行脚本,利用choice实现定时执行功能
    centos下安装tunctl
    OpenStack Train版 简单部署流程(4)- octavia
    LVM基础
    OpenStack Train版 简单部署流程(3)- ceilometer
    openstack stein
  • 原文地址:https://www.cnblogs.com/yjxyy/p/11089752.html
Copyright © 2011-2022 走看看