Level:
Medium
题目描述:
Given an unsorted array of integers, find the length of longest increasing subsequence.
Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Note:
- There may be more than one LIS combination, it is only necessary for you to return the length.
- Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
思路分析:
思路一:动态规划的思想解决。dp[ i ]表示以第i个元素结尾的最长递增子序列的长度,那么状态转移方程就为 if(nums[ j ]<nums[ i ]) dp[ i ]=max(dp[ j ]+1,dp[ i ]);这个递推方程的意思是,在求以nums[ i ]为末尾元素的最长递增子序列时,找到所有序号在 i 之前的且小于nums[ i ]的元素nums[ j ],即 j < i,且 nums[ j ]<nums[ i ]。如果这样的元素存在,那么对于所有的nums[ j ]都有一个以nums[ i ]结尾的最长递增子序列 ,我们将其中的最长序列选出来就是,以nums[ i ]结尾的最长递增子序列长度,如果这样的元素不存在,那么我们以nums[ i ]自身组成一个以它为结尾的递增子序列。算法的时间复杂度为O(n)。
思路二:设计一个容器来存放最长上升子序列,先将nums[0]放入,遍历nums,如果访问到的元素大于,容器尾部的元素,直接加到尾部,如果小于,则使用二分查找找到第一个比其大的元素,将其替换。最终访问完成时,容器中就是最长上升子序列
假设要寻找最长上升子序列的序列是a[n],然后寻找到的递增子序列放入到数组b中。
(1)当遍历到数组a的第一个元素的时候,就将这个元素放入到b数组中,以后遍历到的元素都和已经放入到b数组中的元素进行比较;
(2)如果比b数组中的每个元素都大,则将该元素插入到b数组的最后一个元素,并且b数组的长度要加1;
(3)如果比b数组中最后一个元素小,就要运用二分法进行查找,查找出第一个比该元素大的最小的元素,然后将其替换。
在这个过程中,只重复执行这两步就可以了,最后b数组的长度就是最长的上升子序列长度。例如:如该数列为:
5 9 4 1 3 7 6 7
那么:
5 //加入
5 9 //加入
4 9 //用4代替了5
1 9 //用1代替4
1 3 //用3代替9
1 3 7 //加入
1 3 6 //用6代替7
1 3 6 7 //加入
最后b中元素的个数就是最长递增子序列的大小,即4。
要注意的是最后数组里的元素并不就一定是所求的序列,例如如果输入 2 5 1那么最后得到的数组应该是 1 5而实际上要求的序列是 2 5
代码:
思路一
public class Solution{
public int lengthOfLIS(int []nums){
if(nums==null||nums.length==0)
return 0;
int []dp=new int [nums.length];
dp[0]=1; //表示以nums[0]为结尾的最长递增子序列
int res=1;
for(int i=1;i<nums.length;i++){
dp[i]=1;
for(int j=0;j<i;j++){
if(nums[j]<nums[i]){
dp[i]=Math.max(dp[j]+1,dp[i]);
res=Math.max(res,dp[i]);
}
}
}
return res;
}
}
思路二
public class Solution{
public int lengthOfLIS(int []nums){
if(nums==null||nums.length==0)
return 0;
int []temp=new int [nums.length];
int size=0;
temp[size]=nums[0];
for(int i=1;i<nums.length;i++){
if(nums[i]>temp[size]){
size++;
temp[size]=nums[i];
}else{
int t=search(0,size,temp,nums[i]); //找到第一个大于nums[i]的数
temp[t]=nums[i];
}
}
return size+1;
}
public int search(int start,int end,int []temp,int k){//二分查找第一个大于k的值
while(start<=end){
int mid=(start+end)/2;
if(temp[mid]<k){
start=mid+1;
}else{
end=mid-1;
}
}
return start;
}
}