zoukankan      html  css  js  c++  java
  • 训练笔记

    1、如果batch太小,训练的时候不易收敛,loss容易震荡,

    2、可以设置某几层freeze,不进行参数的更新

    for layer in model.layers:

      layer.trainable = Flase

    3、

    model = Sequential()
    model.add(ZeroPadding2D(padding=(1,1),data_format='channels_last',input_shape=(img_width,img_height,channels)))
    或者
    model = Sequential()
    model.add(Dense(32,input_shape=(28,28,1)))

    Sequential的第一层,不管是Dense层,还是padding,需要指定input_shape,注意!这个input_shape不包含有多少条数据,默认shape[0]都是数据的条数

    而如果是Model,则需要有input层

    inputs = Input(shape=(28,28,1))
    x = ZeroPadding2D(padding=(1,1))(inputs)
    x = Conv2D(64,kernel_size=(3,3),activation='relu')(x)
    x = Conv2D(32,kernel_size=(3,3),activation='relu')(x)
    x = MaxPooling2D(pool_size=(2,2))(x)
    x = Dropout(0.25)(x)
    x = Flatten()(x)
    x = Dense(128,activation='relu')(x)
    x = Dropout(0.5)(x)
    outputs = Dense(num_classes,activation='softmax')(x)
  • 相关阅读:
    浅读《构建之法》
    def 和 lamdba的区别
    Numpy和Pandas的区别
    Django:每点击一次就增加行可输入的表格
    F函数和Q函数的作用
    super()的用法
    liunx操作系统
    celery(超详细)
    celery
    FastDFS环境搭建
  • 原文地址:https://www.cnblogs.com/yjybupt/p/11750487.html
Copyright © 2011-2022 走看看