题目链接:http://www.spoj.com/problems/VLATTICE/
题意:求gcd(a, b, c) = 1 a,b,c <=N 的对数。
思路:我们令函数g(x)为gcd(a, b, c) = x的对数,那么这题就是要求g(1)。我们令f(x)为x | gcd(a, b, c)的对数,显然f(n) = sigma(n | d, g(d)) 。f(d) = (n/d) * (n/d) * (n/d),那么我们就可以用莫比乌斯反演公式了, g(n) = sigma(n | d, mu(d/n)f(d)) g(1) = mu(d)f(d) = mu(d)*(n/d)*(n/d)*(n/d)。考虑1位为0,2位为0的情况。
莫比乌斯反演的两种形式:
g(n) = sigma(d | n, f(d)) f(n) = sigma(d | n, mu(d) * g(n/d))
g(n) = sigma(n | d, f(d)) f(n) = sigma(n | d, mu(d / n) * g(d))
code:
1 #include <cstdio> 2 #include <cstring> 3 using namespace std; 4 typedef long long LL; 5 const int MAXN = 1000005; 6 bool check[MAXN]; 7 int primes[MAXN]; 8 int mu[MAXN]; 9 10 void moblus() 11 { 12 memset(check, false, sizeof(check)); 13 mu[1] = 1; 14 int cnt = 0; 15 for (int i = 2; i < MAXN; ++i) { 16 if (!check[i]) { 17 primes[cnt++] = i; 18 mu[i] = -1; 19 } 20 for (int j = 0; j < cnt; ++j) { 21 if (i * primes[j] > MAXN) break; 22 check[i * primes[j]] = true; 23 if (i % primes[j] == 0) { 24 mu[i * primes[j]] = 0; 25 break; 26 } else { 27 mu[i * primes[j]] = -mu[i]; 28 } 29 } 30 } 31 } 32 33 int main() 34 { 35 moblus(); 36 int nCase; 37 scanf("%d", &nCase); 38 while (nCase--) { 39 int n; 40 scanf("%d", &n); 41 LL ans = 3; // 001 010 100 42 for (int i = 1; i <= n; ++i) { 43 ans += (LL)mu[i] * (n / i) * (n / i) * (n / i + 3); 44 } 45 printf("%lld ", ans); 46 } 47 return 0; 48 }