zoukankan      html  css  js  c++  java
  • A

    Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a binary tree, i.e. any biparous branch splits up to exactly two new branches. We will enumerate by integers the root of binary apple tree, points of branching and the ends of twigs. This way we may distinguish different branches by their ending points. We will assume that root of tree always is numbered by 1 and all numbers used for enumerating are numbered in range from 1 to N, where N is the total number of all enumerated points. For instance in the picture below N is equal to 5. Here is an example of an enumerated tree with four branches:
    2   5
      / 
      3   4
        /
        1
    
    As you may know it's not convenient to pick an apples from a tree when there are too much of branches. That's why some of them should be removed from a tree. But you are interested in removing branches in the way of minimal loss of apples. So your are given amounts of apples on a branches and amount of branches that should be preserved. Your task is to determine how many apples can remain on a tree after removing of excessive branches.

    Input

    First line of input contains two numbers: N and Q ( 2 ≤ N ≤ 100; 1 ≤ Q ≤ N − 1 ). N denotes the number of enumerated points in a tree. Q denotes amount of branches that should be preserved. Next N − 1 lines contains descriptions of branches. Each description consists of a three integer numbers divided by spaces. The first two of them define branch by it's ending points. The third number defines the number of apples on this branch. You may assume that no branch contains more than 30000 apples.

    Output

    Output should contain the only number — amount of apples that can be preserved. And don't forget to preserve tree's root ;-)

    Example

    inputoutput
    5 2
    1 3 1
    1 4 10
    2 3 20
    3 5 20
    
    21
    #include<bits/stdc++.h>
    using namespace std;
    vector<int>g[105];
    int num[105][105],cnt[105];
    int dp[105][105];
    int n,q;
    bool vis[105];
    
    void getcnt(int u)
    {
        vis[u]=true;
        cnt[u]=0;
        for(int i=0;i<g[u].size();i++)
        {
            int v=g[u][i];
            if(!vis[v])
            {
                cnt[u]++;
                getcnt(v);
                cnt[u]+=cnt[v];
            }
        }
    }
    
    void dfs(int u)
    {
        vis[u]=true;
        int first=0,second=0;
        for(int i=0;i<g[u].size();i++)
        {
            int v=g[u][i];
            if(!vis[v])
            {
                if(first)
                  second=v;
                else
                  first=v;
                dfs(v);
            }
        }
        if(second)
        {
            for(int i=1;i<n;i++)
            {
                if(i>cnt[u])
                {
                    dp[u][i]=-1;
                    continue;
                }
                dp[u][i]=0;
                if(cnt[first]>=i-1)
                {
                    dp[u][i]=max(dp[u][i],num[u][first]+dp[first][i-1]);
                }
                if(cnt[second]>=i-1)
                {
                    dp[u][i]=max(dp[u][i],num[u][second]+dp[second][i-1]);
                }
                int tmp=num[u][first]+num[u][second];
                for(int j=0;j<=i-2;j++)
                {
                    if(cnt[first]>=j&&cnt[second]>=i-2-j)
                      dp[u][i]=max(dp[u][i],tmp+dp[first][j]+dp[second][i-2-j]);
                      
                }
            }
        }
        else if(first)
        {
            for(int i=1;i<n;i++)
            {
                if(i>cnt[u])
                {
                    dp[u][i]=-1;
                    continue;
                }
                if(cnt[first]>=i-1)
                {
                    dp[u][i]=num[u][first]+dp[first][i-1];
                }
            }
        }
        else
        {
            for(int i=1;i<n;i++)
              dp[u][i]=-1;
        }
    }
    
    int main()
    {
        cin>>n>>q;
        for(int i=1;i<n;i++)
        {
            int u,v,c;
            cin>>u>>v>>c;
            g[u].push_back(v);
            g[v].push_back(u);
            num[u][v]=num[v][u]=c;
        }
        memset(vis,false,sizeof(vis));
        getcnt(1);
        memset(vis,false,sizeof(vis));
        dfs(1);
        cout<<dp[1][q]<<"
    ";
        return 0;
    }
  • 相关阅读:
    wpf之文件浏览上传
    通过UM用例来图示化系统
    C# System.IO.FileStream 文件正由另一进程使用,因此该进程无法访问该文件
    WPF控件内容模型
    Panel Decorator TextBlock内容模型
    winForm 读取pdf文件并,转换成图片
    wpf之TreeView绑定
    角色权限设计解决方案
    .NET客户端js调用服务器端控件的方法
    快速排序算法
  • 原文地址:https://www.cnblogs.com/ylrwj/p/11960157.html
Copyright © 2011-2022 走看看