imshow()是对图像进行绘制
imshow()函数格式为:
matplotlib.pyplot.
imshow
(X, cmap=None)
X: 要绘制的图像或数组。
cmap: 颜色图谱(colormap), 默认绘制为RGB(A)颜色空间。
实例:
import matplotlib.pyplot as plt plt.imshow(img)
这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据。在窗口上绘制完图片后,返回一个AxesImage对象。要在窗口上显示这个对象,我们可以调用show()函数来进行显示。在ipython中绘制完后不用show函数也能自动把图画出来,网上很多教程都是在ipython中进行的,所以都没提到要用show函数。
from skimage import io,data img=data.astronaut() dst=io.imshow(img) print(type(dst)) io.show()
显示为:
可以看到,类型是'matplotlib.image.AxesImage'。显示一张图片,我们通常更愿意这样写:
import matplotlib.pyplot as plt from skimage import io,data img=data.astronaut() plt.imshow(img) plt.show()
matplotlib是一个专业绘图的库,相当于matlab中的plot,可以设置多个figure窗口,设置figure的标题,隐藏坐标尺,甚至可以使用subplot在一个figure中显示多张图片。一般我们可以这样导入matplotlib库:
import matplotlib.pyplot as plt
也就是说,我们绘图实际上用的是matplotlib包的pyplot模块。
一、用figure函数和subplot函数分别创建主窗口与子图
例:分开并同时显示宇航员图片的三个通道
from skimage import data import matplotlib.pyplot as plt img=data.astronaut() plt.figure(num='astronaut',figsize=(8,8)) #创建一个名为astronaut的窗口,并设置大小 plt.subplot(2,2,1) #将窗口分为两行两列四个子图,则可显示四幅图片 plt.title('origin image') #第一幅图片标题 plt.imshow(img) #绘制第一幅图片 plt.subplot(2,2,2) #第二个子图 plt.title('R channel') #第二幅图片标题 plt.imshow(img[:,:,0],plt.cm.gray) #绘制第二幅图片,且为灰度图 plt.axis('off') #不显示坐标尺寸 plt.subplot(2,2,3) #第三个子图 plt.title('G channel') #第三幅图片标题 plt.imshow(img[:,:,1],plt.cm.gray) #绘制第三幅图片,且为灰度图 plt.axis('off') #不显示坐标尺寸 plt.subplot(2,2,4) #第四个子图 plt.title('B channel') #第四幅图片标题 plt.imshow(img[:,:,2],plt.cm.gray) #绘制第四幅图片,且为灰度图 plt.axis('off') #不显示坐标尺寸 plt.show() #显示窗口
在图片绘制过程中,我们用matplotlib.pyplot模块下的figure()函数来创建显示窗口,该函数的格式为:
matplotlib.pyplot.
figure
(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None)
所有参数都是可选的,都有默认值,因此调用该函数时可以不带任何参数,其中:
num: 整型或字符型都可以。如果设置为整型,则该整型数字表示窗口的序号。如果设置为字符型,则该字符串表示窗口的名称。用该参数来命名窗口,如果两个窗口序号或名相同,则后一个窗口会覆盖前一个窗口。
figsize: 设置窗口大小。是一个tuple型的整数,如figsize=(8,8)
dpi: 整形数字,表示窗口的分辨率。
facecolor: 窗口的背景颜色。
edgecolor: 窗口的边框颜色。
用figure()函数创建的窗口,只能显示一幅图片,如果想要显示多幅图片,则需要将这个窗口再划分为几个子图,在每个子图中显示不同的图片。我们可以使用subplot()函数来划分子图,函数格式为:
matplotlib.pyplot.subplot(nrows, ncols, plot_number)
nrows: 子图的行数。
ncols: 子图的列数。
plot_number: 当前子图的编号。
如:
plt.subplot(2,2,1)
则表示将figure窗口划分成了2行2列共4个子图,当前为第1个子图。我们有时也可以用这种写法:
plt.subplot(221)
两种写法效果是一样的。每个子图的标题可用title()函数来设置,是否使用坐标尺可用axis()函数来设置,如:
plt.subplot(221) plt.title("first subwindow") plt.axis('off')
http://blog.csdn.net/haoji007/article/details/52063168