zoukankan      html  css  js  c++  java
  • Codeforces Round #533 (Div. 2) C. Ayoub and Lost Array 【dp】

    传送门:http://codeforces.com/contest/1105/problem/C

    C. Ayoub and Lost Array

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Ayoub had an array aa of integers of size nn and this array had two interesting properties:

    • All the integers in the array were between ll and rr (inclusive).
    • The sum of all the elements was divisible by 33.

    Unfortunately, Ayoub has lost his array, but he remembers the size of the array nn and the numbers ll and rr, so he asked you to find the number of ways to restore the array.

    Since the answer could be very large, print it modulo 109+7109+7 (i.e. the remainder when dividing by 109+7109+7). In case there are no satisfying arrays (Ayoub has a wrong memory), print 00.

    Input

    The first and only line contains three integers nn, ll and rr (1n2105,1lr1091≤n≤2⋅105,1≤l≤r≤109) — the size of the lost array and the range of numbers in the array.

    Output

    Print the remainder when dividing by 109+7109+7 the number of ways to restore the array.

    Examples
    input
    Copy
    2 1 3
    
    output
    Copy
    3
    
    input
    Copy
    3 2 2
    
    output
    Copy
    1
    
    input
    Copy
    9 9 99
    
    output
    Copy
    711426616
    
    Note

    In the first example, the possible arrays are : [1,2],[2,1],[3,3][1,2],[2,1],[3,3].

    In the second example, the only possible array is [2,2,2][2,2,2].

    题意概括:

    要求构造一个长度为 N 的序列,

    要求:

    1、序列里的数由 【L, R】区间里的数构成。

    2、序列里的数值和要能整除 3

    解题思路:

    一开始还傻傻地以为有什么神奇的规律.....

    其实是一道  DP

    状态: dp[ i ][ k ] 累积到当前序列第 i 位的数值和 余 k 的方案数

    因为要能整除 3 ,所以 k 只能取 0, 1, 2;

    sumi 为 区间 【L,R】的模 3 == i 的值的数量

    转移方程:

    dp[ i ][ 0 ] = dp[i-1][0]*sum0 + dp[i-1][1]*sum2 + dp[i-1][2]*sum1;

    dp[ i ][ 1 ] = dp[i-1][0]*sum1 + dp[i-1][1]*sum0 + dp[i-1][2]*sum2;

    dp[ i ][ 2 ] = dp[i-1][0]*sum2 + dp[i-1][1]*sum1 + dp[i-1][2]*sum0;

    AC code:

     1 #include <bits/stdc++.h>
     2 #define INF 0x3f3f3f3f
     3 #define LL long long
     4 using namespace std;
     5 const LL MOD = 1e9+7;
     6 const int MAXN = 2e5+10;
     7 LL ans;
     8 LL dp[MAXN][4];
     9 
    10 int main()
    11 {
    12     LL N, L, R;
    13     LL it0 = 0, it1 = 0, it2 = 0;
    14     scanf("%I64d %I64d %I64d", &N, &L, &R);
    15     LL len = R-L+1;
    16     LL c = len/3LL, d =len%3LL;
    17     it0 = c; it1 = c; it2 = c;
    18     if(d){
    19         LL t = d==2?1:0;
    20         if(L%3==0) it0++, it1+=t;
    21         else if(L%3 == 1) it1++, it2+=t;
    22         else it2++,it0+=t;
    23     }
    24 
    25     dp[1][0] = it0;
    26     dp[1][1] = it1;
    27     dp[1][2] = it2;
    28 
    29     for(int i = 2; i <= N; i++){
    30         dp[i][0] = ((dp[i-1][0]*it0)%MOD + (dp[i-1][1]*it2)%MOD + (dp[i-1][2]*it1)%MOD)%MOD;
    31 
    32         dp[i][1] = ((dp[i-1][1]*it0)%MOD + (dp[i-1][0]*it1)%MOD + (dp[i-1][2]*it2)%MOD)%MOD;
    33 
    34         dp[i][2] = ((dp[i-1][2]*it0)%MOD + (dp[i-1][1]*it1)%MOD + (dp[i-1][0]*it2)%MOD)%MOD;
    35 
    36     }
    37 
    38     printf("%I64d
    ", dp[N][0]%MOD);
    39     return 0;
    40 
    41 }
  • 相关阅读:
    sqlserver 脚本生成数据库文档
    在命令行中执行kms命令激活Microsoft Office 2010
    .NET Core项目修改project.json来引用其他目录下的源码等文件的办法 & 解决多框架时 project.json 与 app.config冲突的问题
    asp.net 访问局域网共享文件
    Winform开发框架的重要特性总结
    Winform开发框架之插件化应用框架实现
    Winform开发框架之权限管理系统的改进
    Winform开发框架之统计图表的实现
    在Winform开发框架中实现对数据库的加密支持
    Winform开发框架之通用高级查询模块
  • 原文地址:https://www.cnblogs.com/ymzjj/p/10300678.html
Copyright © 2011-2022 走看看