zoukankan      html  css  js  c++  java
  • 2018 Multi-University Training Contest 4 Problem B. Harvest of Apples 【莫队+排列组合+逆元预处理技巧】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6333

    Problem B. Harvest of Apples

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 4043    Accepted Submission(s): 1560


    Problem Description
    There are n apples on a tree, numbered from 1 to n.
    Count the number of ways to pick at most m apples.
     
    Input
    The first line of the input contains an integer T (1T105) denoting the number of test cases.
    Each test case consists of one line with two integers n,m (1mn105).
     
    Output
    For each test case, print an integer representing the number of ways modulo 109+7.
     
    Sample Input
    2
    5 2
    1000 500
     
    Sample Output
    16
    924129523
     
    Source

    题意概括:

    有 N 个苹果,问最多选 m 个苹果的方案有多少种?

    解题思路:

    大佬讲的很好了。

    https://blog.csdn.net/codeswarrior/article/details/81359075

    推出四个公式,算是一道比较裸的莫队了。

    Sm−1n=Smn−CmnSnm−1=Snm−Cnm
    Sm+1n=Smn+Cm+1nSnm+1=Snm+Cnm+1(或者Smn=Sm−1n+CmnSnm=Snm−1+Cnm)

    Smn+1=2Smn−CmnSn+1m=2Snm−Cnm
    Smn−1=Smn+Cmn−12Sn−1m=Snm+Cn−1m2(或者Smn=Smn+1+Cmn2Snm=Sn+1m+Cnm2)

    需要注意的点较多:

    1、精度问题,注意数据范围

    2、为了保证精度,除法需要转换为逆元,预处理逆元的技巧

     

    AC code:

      1 #include<cstdio>
      2 #include<algorithm>
      3 #include<iostream>
      4 #include<cstring>
      5 #include<vector>
      6 #include<queue>
      7 #include<cmath>
      8 #include<set>
      9 #define INF 0x3f3f3f3f
     10 #define LL long long
     11 using namespace std;
     12 const LL MOD = 1e9+7;
     13 const int MAXN = 1e5+10;
     14 LL N, M;
     15 LL fac[MAXN], inv[MAXN];
     16 struct Query
     17 {
     18     int L, R, id, block;
     19     bool operator < (const Query &p)const{
     20         if(block == p.block) return R < p.R;
     21         return block < p.block;
     22     }
     23 }Q[MAXN];
     24 LL res, rev2;
     25 LL ans[MAXN];
     26 
     27 LL q_pow(LL a, LL b)
     28 {
     29     LL pans = 1LL;
     30     while(b){
     31         if(b&1) pans = pans*a%MOD;
     32         b>>=1LL;
     33         a = a*a%MOD;
     34     }
     35     return pans;
     36 }
     37 
     38 LL C(int n, int k)
     39 {
     40     return fac[n]*inv[k]%MOD*inv[n-k]%MOD;
     41 }
     42 
     43 void init()
     44 {
     45     rev2 = q_pow(2, MOD-2);                     // 2的逆元
     46     fac[0] = fac[1] = 1;
     47     for(LL i = 2; i < MAXN; i++){              //预处理阶乘
     48         fac[i] = fac[i-1]*i%MOD;
     49     }
     50 
     51     inv[MAXN-1] = q_pow(fac[MAXN-1], MOD-2);    //逆推预处理阶乘的逆元
     52     for(int i = MAXN-2; i >= 0; i--){
     53         inv[i] = inv[i+1]*(i+1)%MOD;
     54     }
     55 }
     56 
     57 void  addN(int posL, int posR)
     58 {
     59     res = (2*res%MOD-C(posL-1, posR)%MOD + MOD)%MOD;
     60 }
     61 
     62 void addM(int posL, int posR)
     63 {
     64     res = (res+C(posL, posR))%MOD;
     65 }
     66 
     67 void delN(int posL, int posR)
     68 {
     69     res = (res+C(posL-1, posR))%MOD*rev2%MOD;
     70 }
     71 
     72 void delM(int posL, int posR)
     73 {
     74     res = (res - C(posL, posR) + MOD)%MOD;
     75 }
     76 
     77 int main()
     78 {
     79     int T_case;
     80     init();
     81     int len = (int)sqrt(MAXN*1.0);
     82     scanf("%d", &T_case);
     83     for(int i = 1; i <= T_case; i++){
     84         scanf("%d%d", &Q[i].L, &Q[i].R);
     85         Q[i].id = i;
     86         Q[i].block = Q[i].L/len;
     87     }
     88     sort(Q+1, Q+1+T_case);
     89     res = 2;
     90     int curL = 1, curR = 1;
     91     for(int i = 1; i <= T_case; i++){
     92         while(curL < Q[i].L) addN(++curL, curR);
     93         while(curR < Q[i].R) addM(curL, ++curR);
     94         while(curL > Q[i].L) delN(curL--, curR);
     95         while(curR > Q[i].R) delM(curL, curR--);
     96         ans[Q[i].id] = res;
     97     }
     98     for(int i = 1; i <= T_case; i++){
     99         printf("%lld
    ", ans[i]);
    100     }
    101 
    102     return 0;
    103 
    104 }
  • 相关阅读:
    docker十一:docker-DockerFile案例-CMD、ENTRYPOINT、ONBUILD
    查看JVM使用的什么垃圾收集器
    Druid 加载 Kafka 流数据的性能配置参数 TuningConfig
    NPM 和 NVM
    Windows 中 Node.js 中 nvm 的安装配置和使用
    Nvm 安装新的 nodejs 版本
    Druid 加载 Kafka 流数据配置可以读取和处理的流中数据格式
    Druid 加载 Kafka 流数据 KafkaSupervisorIOConfig 配置信息表
    Java 面试都只是背答案不
    有什么理由将代码保存为 GBK 编码
  • 原文地址:https://www.cnblogs.com/ymzjj/p/10330540.html
Copyright © 2011-2022 走看看