zoukankan      html  css  js  c++  java
  • POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845

    Sumdiv

    Time Limit: 1000MS

     

    Memory Limit: 30000K

    Total Submissions: 30268

     

    Accepted: 7447

    Description

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

    Input

    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

    Output

    The only line of the output will contain S modulo 9901.

    Sample Input

    2 3

    Sample Output

    15

    Hint

    2^3 = 8. 
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
    15 modulo 9901 is 15 (that should be output). 

    Source

     

     

    题目概括:

    给出 A 和 B ,求 AB 所有因子之和,答案 mod 9901;

     

    解题思路:

    可对 A 先进行素因子分解 A = p1a1 * p2a2 * p3a3 * ...... * pnan

    即 AB = p1a1*B * p2a2*B * p3a3*B * ...... * pnan*B

    那么 AB 所有因子之和 = (1 + P11 + P12 + P13 + ... + P1a1*B) *  (1 + P21 + P22 + P23 + ... + P2a2*B) * ......* (1 + Pn1 + Pn2 + Pn3 + ... + Pnan*B) ;

     

    对于  (1 + P1 + P2 + P3 + ... + Pa1*B) 我们可以

    ①二分求和 (47 ms)

    AC code:

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <cmath>
     6 #define INF 0x3f3f3f3f
     7 #define LL long long
     8 using namespace std;
     9 const LL MOD = 9901;
    10 const int MAXN = 1e4+10;
    11 LL p[MAXN];
    12 bool isprime[MAXN];
    13 int cnt;
    14 LL A, B;
    15 
    16 void init()                               //打表预处理素因子
    17 {
    18     cnt = 1;
    19     memset(isprime, 1, sizeof(isprime));
    20     for(LL i = 2; i < MAXN; i++){
    21         if(isprime[i]){
    22             p[cnt++] = i;
    23             for(int j = 1; j < cnt && p[j]*i < MAXN; j++)
    24                 isprime[p[j]*i] = false;
    25         }
    26     }
    27 }
    28 
    29 LL qpow(LL x, LL n)
    30 {
    31     LL res = 1LL;
    32     while(n){
    33         if(n&1) res = (res%MOD*x%MOD)%MOD;
    34         x = (x%MOD*x%MOD)%MOD;
    35         n>>=1LL;
    36     }
    37     return res;
    38 }
    39 
    40 LL sum(LL x, LL n)
    41 {
    42     if(n == 0) return 1;
    43     LL res = sum(x, (n-1)/2);
    44     if(n&1){
    45         res = (res + res%MOD*qpow(x, (n+1)/2)%MOD)%MOD;
    46     }
    47     else{
    48         res = (res + res%MOD*qpow(x, (n+1)/2)%MOD)%MOD;
    49         res = (res + qpow(x, n))%MOD;
    50     }
    51     return res;
    52 }
    53 
    54 int main()
    55 {
    56     LL ans = 1;
    57     scanf("%lld %lld", &A, &B);
    58     init();
    59     //printf("%d
    ", cnt);
    60     for(LL i = 1; p[i]*p[i] <= A && i < cnt; i++){          //素因子分解
    61         //printf("%lld
     ", p[i]);
    62         if(A%p[i] == 0){
    63             LL num = 0;
    64             while(A%p[i] == 0){
    65                 num++;
    66                 A/=p[i];
    67             }
    68             ans = ((ans%MOD*sum(p[i], num*B)%MOD)+MOD)%MOD;
    69         }
    70     }
    71     if(A > 1){
    72        // puts("zjy");
    73         ans = (ans%MOD*sum(A, B)%MOD+MOD)%MOD;
    74     }
    75 
    76     printf("%lld
    ", ans);
    77 
    78     return 0;
    79 }
    View Code

    ②应用等比数列求和公式 ( 0ms )

    因为要保证求模时的精度,所以要求逆元。

    这里用的方法是一般情况都适用的 : A/B mod p = A mod (p*B) / B;

    但是考虑乘法会爆int,所以自定义一个二分乘法。

    AC code:

     1 // 逆元 + 二分乘法
     2 #include <cstdio>
     3 #include <iostream>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <cstring>
     7 #define INF 0x3f3f3f3f
     8 #define LL long long
     9 using namespace std;
    10 const int MAXN = 1e4+10;
    11 const LL mod  = 9901;
    12 int p[MAXN], cnt;
    13 bool isp[MAXN];
    14 LL A, B;
    15 
    16 void prime()
    17 {
    18     memset(isp, 1, sizeof(isp));
    19     isp[0] = isp[1] = false;
    20     for(int i = 2; i < MAXN; i++){
    21         if(isp[i]){
    22             p[cnt++] = i;
    23             for(int k = 0; k < cnt && i*p[k] < MAXN; k++){
    24                 isp[i*p[k]] = false;
    25             }
    26         }
    27     }
    28 }
    29 
    30 LL mutil(LL x, LL y, LL MOD)
    31 {
    32     LL res = 0;
    33     while(y){
    34         if(y&1) res = (res+x)%MOD;
    35         x = (x+x)%MOD;
    36         y>>=1LL;
    37     }
    38     return res;
    39 }
    40 
    41 LL q_pow(LL x, LL n, LL MOD)
    42 {
    43     LL res = 1LL;
    44     while(n){
    45         if(n&1) res = mutil(res, x, MOD)%MOD;
    46         x = mutil(x, x, MOD)%MOD;
    47         n>>=1LL;
    48     }
    49     return res;
    50 }
    51 
    52 int main()
    53 {
    54     LL num = 0;
    55     LL ans = 1;
    56     scanf("%lld %lld", &A, &B);
    57     prime();
    58     for(int i = 0; p[i]*p[i] <= A; i++){
    59         if(A%p[i] == 0){
    60             num = 0;
    61             while(A%p[i] == 0){
    62                 A/=p[i];
    63                 num++;
    64             }
    65             LL m = mod*(p[i]-1);
    66             ans *= (q_pow(p[i], num*B+1, m) + m-1)/(p[i] - 1);
    67             ans = ans%mod;
    68             //ans += ((q_pow(p[i], num*B, mod*(p[i]-1))-p[i])/(p[i]-1))%mod;
    69         }
    70     }
    71 
    72     if(A != 1){
    73 //        ans += ((q_pow(A, B, mod*(A-1))-A)/(A-1))%mod;
    74         LL m = mod*(A-1);
    75         ans*=(q_pow(A, B+1, m)+m-1)/(A-1);
    76         ans = ans%mod;
    77     }
    78 
    79     printf("%lld
    ", ans);
    80 
    81     return 0;
    82 }
    View Code

     

     

     

  • 相关阅读:
    win10 下安装 tesseract + tesserocr
    win 10 家庭中文版安装docker ,但是没有 Hyper-V , 这样一步搞定
    Pycharm 分屏
    cookie 和 session
    retrying 模块
    Pychram 运行程序在 run 窗口和 python console 窗口之间切换
    封装、继承、多态
    泛型、反射、注解
    多线程笔记
    多线程
  • 原文地址:https://www.cnblogs.com/ymzjj/p/10389531.html
Copyright © 2011-2022 走看看