zoukankan      html  css  js  c++  java
  • 数值分析实验之非线性方程求根(Python 现)

    详细实验指导见上一篇,此处只写内容啦

    实验内容:

     1. 用二分法求方程x3-3x-1=0在的所有根.要求每个根的误差小于0.001.

       提示与要求: (1) 利用精度找到迭代次数;

               (2) 由f(x)=3(x2-1)可取隔根区间[-2,-1].[-1,1].[1,2]);

               (3) 用程序求各隔根区间内的根.

     2. 用不动点迭代求: (1)x3+2x2+10x-20=0的所有根.

               或: (2)9x2-sinx-1=0在[0,1]上的一个根.

     3. 用Newton迭代法求解下列之一,准确到10-5:

       (1) x3-x-1=0的所有根;

       (2) ex+2-x+2cosx-6=0位于[0,2]上的根.

    实验代码: 

      • 牛顿迭代法

     1 import math
     2 x=0.5
     3 n = 1
     4 while n ==1 or abs(x-x1)>1e-5:
     5     x1 = x
     6     def F(x1):
     7         return 2**-x+2*math.cos(x)+math.exp(x)-6
     8     def F1(x1):
     9         return math.exp(x)-math.log(2)*(2**-x)-2*math.sin(x)
    10     x = x1 - F(x1)/F1(x1)
    11     print ('迭代步数:',n,'X1计算值=',x1,'X计算值=',x)
    12     n = n+1
    13 else:
    14     print('方程的根=',(x))

    运行结果:

       

     • 不动点法

     1 import numpy as np
     2 
     3 def f(x):
     4     return 9*x**2 - np.sin(x) - 1
     5 
     6 def g1(x):
     7     return ((np.sin(x)+1)/9)**0.5
     8 
     9 def g2(x):
    10     result = (abs(2 * x + 1))**(1 / 5)
    11     if (2 * x - 1) < 0:
    12         return -result
    13     return result
    14 
    15 def getEpsilon(x, epsilon):
    16     maxY = minY = x[0]
    17     for each in x:
    18         maxY = max(f(each), maxY)
    19         minY = min((f(each), minY))
    20     epsilon = (maxY - minY) * epsilon
    21     return epsilon
    22 
    23 def getInitialVal(x, N, step, epsilon):
    24     initalVal = []
    25     for i in range(N + 1):
    26         y1, y2, y3 = f(x - step), f(x), f(x + step)
    27         if (y1 * y2 < 0) and (i != 0):
    28             initalVal.append((x + x - step) / 2)
    29         if ((y2 - y1) * (y3 - y2) < 0) and (abs(y2) < epsilon):
    30             initalVal.append(x)
    31         x += step
    32 
    33     return initalVal
    34 
    35 def findFixedPoint(initalVal, delta,epsilon):
    36     points = []
    37     for each in initalVal:
    38         if (abs(g1(each)) < 1):
    39             points.append(iteration(each, g1, delta,epsilon))
    40         else:
    41             points.append(iteration(each, g2, delta,epsilon))
    42     return points
    43 
    44 def iteration(p1, g, delta,epsilon):
    45     while True:
    46         p2 = g(p1)
    47         err =abs(p2-p1)
    48         relerr = err/(abs(p2)+epsilon)
    49         if err<delta or relerr<delta:
    50             return p2
    51         p1 = p2
    52                     
    53 def main():
    54     a, b, c = input().split(' ')
    55     a = float(a)
    56     b = float(b)
    57     c = int(c)
    58     delta = 10 ** (-c)
    59     N = 8
    60     epsilon = 0.01
    61     step = (b - a) / N
    62     x = np.arange(a, b + epsilon, epsilon)
    63     
    64     epsilon2 = getEpsilon(x,epsilon)
    65     initalVal = getInitialVal(a, N, step, epsilon2)
    66     ans = findFixedPoint(initalVal, delta,epsilon)
    67 
    68     for each in ans:
    69         print('方程的根为:%.6f' % each)
    70         
    71 if __name__ == '__main__':
    72     main()

       运行结果:

      

  • 相关阅读:
    端午节
    使用MetaWeblog写博客
    Ajax 跨域操作
    MetaWeblogApi 开发, 离线写博客
    大三开学
    JVM003ConcurrentHashMap底层原理是什么
    JVM009JVM性能调优概述
    JVM006Java类加载器有哪些
    JVM004GC如何判断对象可以被回收
    JVM008JVM内存结构如何划分
  • 原文地址:https://www.cnblogs.com/ynly/p/12894247.html
Copyright © 2011-2022 走看看