圆上n个点等距离分布, 求构成的星星的面积。
我们可以求三角形OAB的面积, ∠CAE = 1/2 ∠ COE = PI/n, 那么∠CAO = PI/2n, ∠AOB非常好求, 就是PI/n, 然后AO = r, ∠ABO = PI-∠CAO-∠AOB, 就可以用正弦定理求出任意另外一条边, 然后s = 1/2absinC, 就可以求出来了。
#include <iostream> #include <vector> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <map> #include <set> #include <string> #include <queue> #include <stack> #include <bitset> using namespace std; #define pb(x) push_back(x) #define ll long long #define mk(x, y) make_pair(x, y) #define lson l, m, rt<<1 #define mem(a) memset(a, 0, sizeof(a)) #define rson m+1, r, rt<<1|1 #define mem1(a) memset(a, -1, sizeof(a)) #define mem2(a) memset(a, 0x3f, sizeof(a)) #define rep(i, n, a) for(int i = a; i<n; i++) #define fi first #define se second typedef pair<int, int> pll; const double PI = acos(-1.0); const double eps = 1e-8; const int mod = 1e9+7; const int inf = 1061109567; const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; int main() { int n, r; cin>>n>>r; double ang1 = PI/n/2; double ang2 = PI/n; double ang3 = PI-ang1-ang2; double len = sin(ang1)*r/sin(ang3); double s = 0.5*r*len*sin(ang2); s = s*2*n; printf("%.8f ", s); return 0; }