zoukankan      html  css  js  c++  java
  • codeforces 633G. Yash And Trees dfs序+线段树+bitset

    题目链接

    G. Yash And Trees
    time limit per test
    4 seconds
    memory limit per test
    512 megabytes
    input
    standard input
    output
    standard output

    Yash loves playing with trees and gets especially excited when they have something to do with prime numbers. On his 20th birthday he was granted with a rooted tree of n nodes to answer queries on. Hearing of prime numbers on trees, Yash gets too intoxicated with excitement and asks you to help out and answer queries on trees for him. Tree is rooted at node 1. Each node i has some value aiassociated with it. Also, integer m is given.

    There are queries of two types:

    1. for given node v and integer value x, increase all ai in the subtree of node v by value x
    2. for given node v, find the number of prime numbers p less than m, for which there exists a node u in the subtree of v and a non-negative integer value k, such that au = p + m·k.
    Input

    The first of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 1000) — the number of nodes in the tree and value mfrom the problem statement, respectively.

    The second line consists of n integers ai (0 ≤ ai ≤ 109) — initial values of the nodes.

    Then follow n - 1 lines that describe the tree. Each of them contains two integers ui and vi (1 ≤ ui, vi ≤ n) — indices of nodes connected by the i-th edge.

    Next line contains a single integer q (1 ≤ q ≤ 100 000) — the number of queries to proceed.

    Each of the last q lines is either 1 v x or 2 v (1 ≤ v ≤ n, 0 ≤ x ≤ 109), giving the query of the first or the second type, respectively. It's guaranteed that there will be at least one query of the second type.

    Output

    For each of the queries of the second type print the number of suitable prime numbers.

    Examples
    input
    8 20
    3 7 9 8 4 11 7 3
    1 2
    1 3
    3 4
    4 5
    4 6
    4 7
    5 8
    4
    2 1
    1 1 1
    2 5
    2 4
    output
    3
    1
    1
    input
    5 10
    8 7 5 1 0
    1 2
    2 3
    1 5
    2 4
    3
    1 1 0
    1 1 2
    2 2
    output
    2


    题目给的第二个操作, Ai = p+k*m就相当于问Ai%m是不是素数, 想到这个就好做了....每一个节点一个bitset, 然后查询完之后结果与一个素数表进行&操作, 看还剩下几个值, 答案就是几。
    #include <iostream>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <map>
    #include <set>
    #include <string>
    #include <queue>
    #include <stack>
    #include <bitset>
    using namespace std;
    #define pb(x) push_back(x)
    #define ll long long
    #define mk(x, y) make_pair(x, y)
    #define lson l, m, rt<<1
    #define mem(a) memset(a, 0, sizeof(a))
    #define rson m+1, r, rt<<1|1
    #define mem1(a) memset(a, -1, sizeof(a))
    #define mem2(a) memset(a, 0x3f, sizeof(a))
    #define rep(i, n, a) for(int i = a; i<n; i++)
    #define fi first
    #define se second
    typedef pair<int, int> pll;
    const double PI = acos(-1.0);
    const int inf = 1061109567;
    const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
    const int maxn = 1e5+2;
    int in[maxn], out[maxn], dfs_clock, mod, add[maxn<<2];
    bitset <1000> sum[maxn<<2], prime;
    int head[maxn*2], num, a[maxn], b[maxn], vx[1005];
    struct node
    {
        int to, nextt;
    }e[maxn*2];
    void addd(int u, int v) {
        e[num].to = v, e[num].nextt = head[u], head[u] = num++;
    }
    void init() {
        num = 0;
        mem1(head);
    }
    void dfs(int u, int fa) {
        in[u] = ++dfs_clock;
        for(int i = head[u]; ~i; i = e[i].nextt) {
            int v = e[i].to;
            if(v == fa)
                continue;
            dfs(v, u);
        }
        out[u] = dfs_clock;
    }
    inline void pushUp(int rt) {
        sum[rt] = sum[rt<<1]|sum[rt<<1|1];
    }
    inline void change(int rt, int val) {
        sum[rt] = (sum[rt]<<val)|(sum[rt]>>(mod-val));
    }
    void pushDown(int rt) {
        if(add[rt]) {
            change((rt<<1), add[rt]);
            change((rt<<1|1), add[rt]);
            add[rt<<1] = (add[rt]+add[rt<<1])%mod;
            add[rt<<1|1] = (add[rt]+add[rt<<1|1])%mod;
            add[rt] = 0;
        }
    }
    void build(int l, int r, int rt) {
        if(l == r) {
            sum[rt][b[l]] = 1;
            return ;
        }
        int m = l+r>>1;
        build(lson);
        build(rson);
        pushUp(rt);
    }
    void update(int L, int R, int val, int l, int r, int rt) {
        if(L<=l&&R>=r) {
            change(rt, val);
            add[rt] = (val+add[rt])%mod;
            return ;
        }
        pushDown(rt);
        int m = l+r>>1;
        if(L<=m)
            update(L, R, val, lson);
        if(R>m)
            update(L, R, val, rson);
        pushUp(rt);
    }
    bitset<1000> query(int L, int R, int l, int r, int rt) {
        if(L<=l&&R>=r) {
            return sum[rt];
        }
        pushDown(rt);
        bitset<1000> ret;
        ret.reset();
        int m = l+r>>1;
        if(L<=m)
            ret |= query(L, R, lson);
        if(R>m)
            ret |= query(L, R, rson);
        return ret;
    }
    int main()
    {
        int n, u, v, q, x, y, z;
        scanf("%d%d", &n, &mod);
        init();
        for(int i = 1; i<=n; i++) {
            scanf("%d", &a[i]);
            a[i] %= mod;
        }
        for(int i = 1; i<n; i++) {
            scanf("%d%d", &u, &v);
            addd(u, v);
            addd(v, u);
        }
        for(int i = 2; i<mod; i++)
        {
            if(vx[i])
                continue;
            prime[i] = 1;
            for(int j = i; j<mod; j+=i)
                vx[j]=1;
        }
        dfs(1, -1);
        for(int i = 1; i<=n; i++) {
            b[in[i]] = a[i];
        }
        build(1, n, 1);
        scanf("%d", &q);
        while(q--) {
            scanf("%d%d", &x, &y);
            if(x == 1) {
                scanf("%d", &z);
                z %= mod;
                update(in[y], out[y], z, 1, n, 1);
            } else {
                bitset<1000> tmp = query(in[y], out[y], 1, n, 1);
                tmp &= prime;
                printf("%d
    ", tmp.count());
            }
        }
        return 0;
    }
  • 相关阅读:
    396 Rotate Function 旋转函数
    395 Longest Substring with At Least K Repeating Characters 至少有K个重复字符的最长子串
    394 Decode String 字符串解码
    393 UTF-8 Validation UTF-8 编码验证
    392 Is Subsequence 判断子序列
    391 Perfect Rectangle 完美矩形
    390 Elimination Game 淘汰游戏
    389 Find the Difference 找不同
    388 Longest Absolute File Path 最长的绝对文件路径
    387 First Unique Character in a String 字符串中的第一个唯一字符
  • 原文地址:https://www.cnblogs.com/yohaha/p/5237741.html
Copyright © 2011-2022 走看看