zoukankan      html  css  js  c++  java
  • codeforces 713D D. Animals and Puzzle 二分+二维rmq

    题目链接

    给一个01矩阵, 然后每个询问给出两个坐标(x1, y1), (x2, y2)。 问你这个范围内的最大全1正方形的边长是多少。

    我们dp算出以i, j为右下角的正方形边长最大值。 然后用二维st表预处理出所有的最大值。 对于每个询问, 我们二分一个值mid, 查询(x1 + mid -1, y1 + mid -1), (x2, y2)这个范围内的最大值是否大于mid 。如果大于的话就说明在(x1, y1), (x2, y2)范围内存在一个边长为mid的正方形。

    #include <bits/stdc++.h>
    using namespace std;
    #define pb(x) push_back(x)
    #define ll long long
    #define mk(x, y) make_pair(x, y)
    #define lson l, m, rt<<1
    #define mem(a) memset(a, 0, sizeof(a))
    #define rson m+1, r, rt<<1|1
    #define mem1(a) memset(a, -1, sizeof(a))
    #define mem2(a) memset(a, 0x3f, sizeof(a))
    #define rep(i, n, a) for(int i = a; i<n; i++)
    #define fi first
    #define se second
    typedef complex <double> cmx;
    typedef pair<int, int> pll;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int mod = 1e9+7;
    const int inf = 1061109567;
    const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
    int dp[1001][1001][11][11], mm[1005];
    void initRmq(int n, int m)
    {
        mm[0] = -1;
        for(int i = 1; i <= max(n, m); i++) {
            mm[i] = ((i&(i-1)) == 0) ? mm[i-1] + 1 : mm[i-1];
        }
        for (int ii = 0; ii <= mm[n]; ii ++) {
            for (int jj = 0; jj <= mm[m]; jj ++) {
                if (ii + jj) {
                    for (int i = 1; i + (1<<ii) - 1 <= n; i ++) {
                        for(int j = 1; j + (1<<jj) - 1 <= m; j ++) {
                            if (ii) {
                                dp[i][j][ii][jj] = max(dp[i][j][ii-1][jj], dp[i+(1<<(ii-1))][j][ii-1][jj]);
                            } else {
                                dp[i][j][ii][jj] = max(dp[i][j][ii][jj-1], dp[i][j+(1<<(jj-1))][ii][jj-1]);
                            }
                        }
                    }
                }
            }
        }
    }
    int rmq(int x1, int y1, int x2, int y2)
    {
        int k1 = mm[x2-x1+1];
        int k2 = mm[y2-y1+1];
        x2 = x2 - (1<<k1) + 1;
        y2 = y2 - (1<<k2) + 1;
        return max(max(dp[x1][y1][k1][k2], dp[x1][y2][k1][k2]), max((dp[x2][y1][k1][k2]), dp[x2][y2][k1][k2]));
    }
    int main()
    {
        int n, m, x, q, x1, y1, x2, y2;
        cin>>n>>m;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                scanf("%d", &x);
                if (x)
                    dp[i][j][0][0] = min(min(dp[i-1][j][0][0], dp[i][j-1][0][0]), dp[i-1][j-1][0][0]) + 1;
            }
        }
        initRmq(n, m);
        cin>>q;
        while (q--) {
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            int l = 0, r = min(x2 - x1, y2 - y1) + 1;
            int ans;
            while (l <= r) {
                int mid = l + r >> 1;
                if (rmq(x1 + mid - 1, y1 + mid - 1, x2, y2) >= mid) {
                    ans = mid;
                    l = mid + 1;
                } else {
                    r = mid - 1;
                }
            }
            printf("%d
    ", ans);
        }
        return 0;
    }
  • 相关阅读:
    ZOJ 2859 Matrix Searching
    URAL 1102. Strange Dialog
    ZOJ 1986 Bridging Signals
    POJ 3233 Matrix Power Series
    POJ 1836 Alignment
    POJ 3267 The Cow Lexicon
    ZOJ 3471 Most Powerful
    IIS:HTTP 错误 403.9 禁止访问:连接的用户过多
    使用Command对象执行数据库操作
    C#类型转换
  • 原文地址:https://www.cnblogs.com/yohaha/p/5930152.html
Copyright © 2011-2022 走看看