zoukankan      html  css  js  c++  java
  • POJ 3264 区间最大最小值Sparse_Table算法

    题目链接:http://poj.org/problem?id=3264

     Balanced Lineup

    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 47515   Accepted: 22314
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    题目大意:给定一个数组,然后给一个区间[a,b],输出从a到b中的最大值和最小值的差。
    RMQ 和 线段树 均可
    RMQ代码:
     1 #include <stdio.h>
     2 #define MAX(a,b) (a>b ? a:b)
     3 #define MIN(a,b) (a>b ? b:a)
     4 #define N 50010
     5 int a[N],ma[N][25],mi[N][25];
     6 
     7 void ST(int n)
     8 {
     9    int i,j;
    10    for(i=1;i<=n;i++) 
    11        mi[i][0]=ma[i][0]=a[i];
    12        
    13     for (j = 1; (1<<j) <= n; j ++)
    14     for (i = 1; i + (1<<j)-1 <= n; i ++)
    15     {
    16         ma[i][j]=MAX(ma[i][j-1],ma[i+(1<<(j-1))][j-1]);
    17         mi[i][j]=MIN(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
    18     }
    19 }
    20 
    21 int rmq(int a,int b)
    22 {
    23     int k = 0;
    24     while((1<<(k+1)) <= b-a+1) k++;
    25     return MAX(ma[a][k],ma[b-(1<<k)+1][k])-MIN(mi[a][k],mi[b-(1<<k)+1][k]);
    26 }
    27 
    28 int main()
    29 {
    30    int n,i,q,x,y;
    31    while(scanf("%d %d",&n,&q)!=-1)
    32    {
    33        for(i=1;i<=n;i++)
    34            scanf("%d",a+i);
    35        ST(n);
    36        for(i=1;i<=q;i++)
    37        {
    38            scanf("%d %d",&x,&y);
    39            printf("%d
    ",rmq(x,y));
    40        }
    41    }
    42    return 0;
    43 }
    View Code
     
  • 相关阅读:
    卷积神经网络
    自适应学习率调整:AdaDelta
    协同过滤推荐算法总结
    深入FM和FFM原理与实践
    一些关于量化交易的书籍清单(转)
    矩阵分解在协同过滤推荐算法中的应用
    交替最小二乘ALS
    Mocha的单元测试实战
    Fis3前端工程化之项目实战
    Fis3的前端工程化之路[三大特性篇之声明依赖]
  • 原文地址:https://www.cnblogs.com/yoke/p/5858054.html
Copyright © 2011-2022 走看看