zoukankan      html  css  js  c++  java
  • hdu 2602 Bone Collector(01背包)模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602

    Bone Collector

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 54132    Accepted Submission(s): 22670


    Problem Description
    Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
    The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
     
    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     
    Output
    One integer per line representing the maximum of the total value (this number will be less than 231).
     
    Sample Input
    1
    5 10
    1 2 3 4 5
    5 4 3 2 1
     
    Sample Output
    14
     
    01背包问题,这种背包特点是:每种物品仅有一件,可以选择放或不放。
    用子问题定义状态:即dp[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
    则其状态转移方程便是:
    dp[i][v]=max{dp[i-1][v],dp[i-1][v-cost[i]]+value[i]}
     1 #include<iostream>
     2 using namespace std;
     3 int dp[1000][1000];
     4 
     5 int max(int x,int y)
     6 {
     7     return x>y?x:y;
     8 }
     9 
    10 int main()
    11 {
    12     int t,n,v,i,j;
    13     int va[1000],vo[1000];
    14     cin>>t;
    15     while(t--)
    16     {
    17         cin>>n>>v;
    18         for(i=1;i<=n;i++)
    19             cin>>va[i];
    20         for(i=1;i<=n;i++)
    21             cin>>vo[i];
    22         memset(dp,0,sizeof(dp));//初始化操作
    23          for(i=1;i<=n;i++)
    24         {
    25             for(j=0;j<=v;j++)
    26             {
    27                 if(vo[i]<=j)//表示第i个物品将放入大小为j的背包中
    28                     dp[i][j]=max(dp[i-1][j],dp[i-1][j-vo[i]]+va[i]);//第i个物品放入后,那么前i-1个物品可能会放入也可能因为剩余空间不够无法放入
    29                 else //第i个物品无法放入
    30                     dp[i][j]=dp[i-1][j];
    31             }
    32         }
    33         cout<<dp[n][v]<<endl;
    34     }
    35     return 0;
    36 }

    该题的第二种解法就是对背包的优化解法,当然只能对空间就行优化,时间是不能优化的。

    先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组dp[i][0..V]的所有值。
    那么,如果只用一个数组dp[0..V],能不能保证第i次循环结束后dp[v]中表示的就是我们定义的状态dp[i][v]呢?

    dp[i][v]是由dp[i-1][v]和dp[i-1][v-c[i]]两个子问题递推而来,能否保证在推dp[i][v]时(也即在第i次主循环中推dp[v]时)能够得到dp[i-1][v]和dp[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推dp[v],这样才能保证推dp[v]时dp[v-c[i]]保存的是状态dp[i-1][v-c[i]]的值。伪代码如下:

    for i=1..N

        for v=V..0

            dp[v]=max{dp[v],dp[v-c[i]]+w[i]};

    注意:这种解法只能由V--0,不能反过来,如果反过来就会造成物品重复放置!

     1 #include<iostream>
     2 using namespace std;
     3 #define Size 1111
     4 int va[Size],vo[Size];
     5 int dp[Size];
     6 int Max(int x,int y)
     7 {
     8     return x>y?x:y;
     9 }
    10 int main()
    11 {
    12     int t,n,v;
    13     int i,j;
    14     cin>>t;
    15     while(t--)
    16     {
    17         cin>>n>>v;
    18         for(i=1;i<=n;i++)
    19             cin>>va[i];
    20         for(i=1;i<=n;i++)
    21             cin>>vo[i];
    22         memset(dp,0,sizeof(dp));
    23         for(i=1;i<=n;i++)
    24         {
    25             for(j=v;j>=vo[i];j--)
    26             {
    27                 dp[j]=Max(dp[j],dp[j-vo[i]]+va[i]); 
    28             }
    29         }
    30         cout<<dp[v]<<endl;
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    闲着写了一个查看股票的程序
    Oracle10g正则表达式
    跨语言平台的RSA加密、解密、签名、验证算法的实现
    Base64转换:AQAB=65537,你知道为什么吗?
    无题
    07年了,新的一年又开始了
    简单生活
    近期关注
    闲话
    各大网站的WEB服务器分析
  • 原文地址:https://www.cnblogs.com/yoke/p/6106079.html
Copyright © 2011-2022 走看看