zoukankan      html  css  js  c++  java
  • hdu 3367 Pseudoforest (最大生成树 最多存在一个环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3367

    Pseudoforest

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2870    Accepted Submission(s): 1126


    Problem Description
    In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

     
    Input
    The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
    The last test case is followed by a line containing two zeros, which means the end of the input.
     
    Output
    Output the sum of the value of the edges of the maximum pesudoforest.
     
    Sample Input
    3 3
    0 1 1
    1 2 1
    2 0 1
    4 5
    0 1 1
    1 2 1
    2 3 1
    3 0 1
    0 2 2
    0 0
     
    Sample Output
    3
    5

     题目大意:在一个无向图中,给定一些边的联通情况以及边的权值,求最大生成树(最多存在一条环路)。

    解题思路:用kruskal的方法按照求最大生成树那样求的,只不过要加一个判断,就是判断两颗子树是够成环,

         如果各成环,就不能合并,如果只有其中一个成环或者都不成环,那么就可以合并,并对其进行标记。。。

    AC代码:

    20041234    2017-03-08 16:17:45    Accepted    3367    546MS    2668K    1272 B    G++
    
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    
    using namespace std;
    
    struct point 
    {
        int u,v,l;
    }p[100010];
    int parent[10010],n,m,vis[10010];  // vis数组用来标记是否形成环 
    bool cmp(point a, point b)
    {
        return a.l > b.l;              // 从大到小排列 
    }
    
    int find (int x)
    {
        int s,tmp;
        for (s = x; parent[s] >= 0; s = parent[s]);
        while (s != x)
        {
            tmp = parent[x];
            parent[x] = s;
            x = tmp;
        }
        return s;
    }
    void Union(int A, int B)
    {
        int a = find(A), b = find(B);
        int tmp = parent[a]+parent[b];
        if (parent[a] < parent[b])
        {
            parent[b] = a;
            parent[a] = tmp;
        }
        else
        {
            parent[a] = b;
            parent[b] = tmp;
        }
    }
    int kruskal()
    {
        int sum = 0,max = 0;
        sort(p,p+m,cmp);
        memset(vis,0,sizeof(vis));
        memset(parent,-1,sizeof(parent));
        for (int i = 0; i < m; i ++)
        {
            int u = find(p[i].u), v = find(p[i].v);
            if (u != v)
            {
                if (vis[u] && vis[v]) continue;  // 如果两棵子树,各自能够形成一个环,则不合并 
                if (vis[u] || vis[v])            // 如果只有其中一个形成环,或者两个都没形成环,合并同时标记 
                    vis[u] = vis[v] = 1;
                max += p[i].l;
                Union(u,v);
            }
            else if(!vis[u] || !vis[v])         // 在同一连通分量内且有一个或者两个都没形成环   合并且标记 
            {
                vis[u] = vis[v] = 1;
                max += p[i].l;
                Union(u,v);
            }
        }
        return max;
    }
    int main ()
    {
        while (scanf("%d%d",&n,&m),n+m!=0)
        {
            for (int i = 0; i < m; i ++)
                scanf("%d%d%d",&p[i].u,&p[i].v,&p[i].l);
            printf("%d
    ",kruskal());
        }
        return 0;
    }
  • 相关阅读:
    TDateTime 的相关用法
    Delphi 2005 之后的版本如何装组件
    (收藏)《博客园精华集》分类索引
    用 IIS 7、ARR 與 Velocity 建设高性能的大型网站
    异常处理准则
    Linq之动态排序(字符传入)
    用存储过程构造一个虚拟日期表发现的趣事
    Linq to SQL 加注Data Annotation在 Asp.Net MVC2中的应用
    .net framework加密方法
    SQL Server到Oracle连接服务器
  • 原文地址:https://www.cnblogs.com/yoke/p/6520080.html
Copyright © 2011-2022 走看看