zoukankan      html  css  js  c++  java
  • 最长斐波那契序列-LeetCode-873

    英文版
    A sequence X_1, X_2, ..., X_n is fibonacci-like if:

    - n >= 3
    - X_i + X_{i+1} = X_{i+2} for all i + 2 <= n

    Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A. If one does not exist, return 0.

    (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements. For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)

    Example 1:

    Input: [1,2,3,4,5,6,7,8]
    Output: 5
    Explanation:
    The longest subsequence that is fibonacci-like: [1,2,3,5,8].

    Example 2:

    Input: [1,3,7,11,12,14,18]
    Output: 3
    Explanation:
    The longest subsequence that is fibonacci-like:
    [1,11,12], [3,11,14] or [7,11,18].

    Note:

    • - 3 <= A.length <= 1000
    • - 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9

    (The time limit has been reduced by 50% for submissions in Java, C, and C++.)

    中文版:
    给你一个严格单调递增的数组,请问数组里最长的斐波那契序列的长度是多少?例如,如果输入的数组是[1, 2, 3, 4, 5, 6, 7, 8],由于其中最长的斐波那契序列是1, 2, 3, 5, 8,因此输出应该是5。

    分析:

    思路一
    在斐波那契序列中,第n个数字等于第n-1个数字与第n-2个数字之和。

    考虑以数组中第i个数字(记为A[i])为结尾的最长斐波那契序列的长度。对于每一个j(0 <= j < i),A[j]都有可能是在某个斐波那契序列中A[i]前面的一个数字。如果存在一个k(k < j)满足A[k] + A[j] = A[i],那么这三个数字就组成了一个斐波那契序列。这个以A[i]为结尾、前一个数字是A[j]的斐波那契序列是在以A[j]为结尾、前一个数字是A[k]的序列的基础上增加了一个数字A[i],因此前者的长度是在后者的长度基础上加1。

    我们可以用一个二维数组lengths来记录斐波那契序列的长度。二维数组中第i行第j列数字的含义是以输入数组中A[i]结尾、并且前一个数字是A[j]的斐波那契序列的长度。如果存在一个数字k,满足A[k] + A[j] = A[i],那么lengths[i][j] = lengths[j][k] + 1。如果不存在满足条件的k,那么意味这A[j]、A[i]不在任意一个斐波那契序列中,lengths[i][j]等于2。

    二维数组lengths中的最大值就是输出值。

     1 class Solution {
     2     public int lenLongestFibSubseq(int[] A) {
     3         if (null == A || A.length == 0) {
     4             return 0;
     5         }
     6         Map<Integer, Integer> map = new HashMap<>();
     7         for (int i = 0; i < A.length; i ++) {
     8             map.put(A[i], i);
     9         }
    10         
    11         int[][] lengths = new int[A.length][A.length];
    12         int maxLength = 1;
    13         for (int i = 1; i < A.length; i ++) {
    14             int num_3 = A[i];
    15             int length = 2;
    16             for (int j = i-1; j >= 0; j --) {
    17                 int num_2 = A[j];
    18                 int num_1 = num_3 - num_2;
    19                 
    20                 int len = 2;
    21                 if (num_1 < num_2 && map.containsKey(num_1)) {
    22                     len = lengths[j][map.get(num_1)] + 1;
    23                 }
    24                 lengths[i][j] = len;
    25                 length = Math.max(length, len);
    26             }
    27             maxLength = Math.max(maxLength, length);
    28         }
    29         return maxLength > 2 ? maxLength : 0;
    30     }
    31 }

    思路二
    双重循环枚举所有可能的情况

     1 class Solution {
     2     public int lenLongestFibSubseq(int[] A) {
     3         int N = A.length;
     4         Set<Integer> S = new HashSet();
     5         for (int x: A) S.add(x);
     6 
     7         int ans = 0;
     8         for (int i = 0; i < N; ++i)
     9             for (int j = i+1; j < N; ++j) {
    10                 int x = A[j], y = A[i] + A[j];
    11                 int length = 2;
    12                 while (S.contains(y)) {
    13                     // x, y -> y, x+y
    14                     int tmp = y;
    15                     y += x;
    16                     x = tmp;
    17                     ans = Math.max(ans, ++length);
    18                 }
    19             }
    20 
    21         return ans >= 3 ? ans : 0;
    22     }
    23 }
  • 相关阅读:
    SQL Server 简单事务学习
    C# TreeView,递归循环数据加载到treeView1中
    javascript;Jquery;获取JSON对象,无刷新分页,异步加载,异步删除,实例。
    jquery获取当前页面的URL信息
    java的数据类型相关知识点
    java 图书馆初级编写
    1.1 弹出窗口控制
    轮播图片切换(函数传参)
    商品计算
    js中的作用域
  • 原文地址:https://www.cnblogs.com/yoke/p/9763502.html
Copyright © 2011-2022 走看看