zoukankan      html  css  js  c++  java
  • 1019. General Palindromic Number

    1019. General Palindromic Number (20)

    时间限制
    400 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N > 0 in base b >= 2, where it is written in standard notation with k+1 digits ai as the sum of (aibi) for i from 0 to k. Here, as usual, 0 <= ai < b for all i and ak is non-zero. Then N is palindromic if and only if ai = ak-i for all i. Zero is written 0 in any base and is also palindromic by definition.

    Given any non-negative decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.

    Input Specification:

    Each input file contains one test case. Each case consists of two non-negative numbers N and b, where 0 <= N <= 109 is the decimal number and 2 <= b <= 109 is the base. The numbers are separated by a space.

    Output Specification:

    For each test case, first print in one line "Yes" if N is a palindromic number in base b, or "No" if not. Then in the next line, print N as the number in base b in the form "ak ak-1 ... a0". Notice that there must be no extra space at the end of output.

    Sample Input 1:
    27 2
    
    Sample Output 1:
    Yes
    1 1 0 1 1
    
    Sample Input 2:
    121 5
    
    Sample Output 2:
    No
    4 4 1
     1 #include<stdio.h>
     2 #include<math.h>
     3 #include<stdlib.h>
     4 #include<string.h>
     5 
     6 int main()
     7 {
     8     int i = 0, n, b, k, a[100];
     9     scanf("%d%d", &n, &b);
    10     do{
    11         a[i++] = n % b;
    12         n /= b;
    13     }while(n != 0);
    14     k = i - 1;
    15     int flag = 1;
    16     for(i = 0; i <= k / 2; i++)
    17     {
    18         if(a[i] != a[k - i])
    19         {
    20             flag = 0;
    21             break;
    22         }
    23     }
    24     if(flag)
    25         printf("Yes
    ");
    26     else
    27         printf("No
    ");
    28     for(i = k; i > 0; i--)
    29     {
    30         printf("%d ", a[i]);
    31     }
    32     printf("%d
    ", a[0]);
    33     return 0;
    34 }
  • 相关阅读:
    最小生成树(Prim和Kruscal)
    SPFA(还是稍微写写吧,虽然没什么用)
    最短路径(随便写写)(Floyd,Bellman-Ford,Dijkstra)
    Just a Hook HDU
    数论逆元
    最长上升子序列(LIS)算法(附Codeforces Round #641 (Div. 2),B题题解)
    Educational Codeforces Round 86 (Rated for Div. 2)
    Codeforces Round #633 (Div. 2)
    Codeforces Round #631 (Div. 2)
    Mayor's posters(线段树离散化)
  • 原文地址:https://www.cnblogs.com/yomman/p/4270959.html
Copyright © 2011-2022 走看看