zoukankan      html  css  js  c++  java
  • [水题日常]UVA1639 糖果(Candy,ACM/ICPC Chengdu 2012)

    • 今天来尝试了几道数学期望相关的题,这是我认为比较有趣的一道题
    • 这次不废话啦直接开始~



    • 一句话题意:两个分别装有n个糖果的盒子,每次随机选一个盒子然后拿走一颗糖(选的概率分别是\(p\)\((1-p)\)),直到有一次选了一个盒子打开之后发现没有糖果了,求另一个盒子糖果个数的期望值
    • \(n<=2*10^5\)

    嗯首先我们得知道期望的线性性质:\(E(X+Y)=E(X)+E(Y)\)

    • 如果我们假设最后打开的是第一个盒子,那么第二个盒子的糖果个数其实可能有\(0~n\)个,如果已经知道了有\(i\)个的概率就好了,这样根据期望的线性性质答案就是把所有的\(i*P(i)\)加起来(当然还要考虑最后打开第二个盒子)

    • 好的我们现在来具体考虑第二个盒子有\(i\)个糖果的情况,第二个盒子还有\(i\)个的话那么在这之前盒子一定被打开过了\(n+n-i=2n-i\)次(\(n\)次取第一个盒子,\(n-i\)次取第二个),这样一来概率就是\(C(2n-i,n)p^{n+1}(1-p)^{n-i}\)(因为在这之前取了\(n\)次第一个盒子,这次又取了一次)

    • 然后每次枚举一下\(i\)对两种情况(最后打开第一个或第二个盒子)求个和是不是就可以了?

    • 蓝鹅这样子在理论上是正确的,但是实际求的时候\(C(2n-i,n)\)可以挺大的,而\(p^{n+1}\)\((1-p)^{n-i}\)会很小,直接算的话会有精度误差(当然如果你要写高精度我也不拦你~),而且这个误差应该会比较大,大概超出了题目的要求(我之前改进后过程用double好像都wa掉了…),那么怎么办呢?

    • 紫书上关于这题介绍了一种取对数的处理方法,具体来说就是在算的过程中全部取对数(我这里是\(e\)为底啦…不过好像一般也都是这样),比如最后打开第一个盒子时第二个盒子有\(i\)个糖果的概率取\(e\)的对数就是\(v1(i)=ln(C(2n-i,n))+(n+1)ln(p)+(n-i)ln(1-p)\)啦(第二个盒子的情况同理),最后把答案加上\(i(e^{v1(i)}+e^{v2(i)})\)就好啦~

    • 预处理阶乘的对数的时候注意可能会用到\(n\)的两倍

    • 再具体的话就没什么好说的啦

    • 还是存一下代码吧~

        #include<cstdio>
        #include<cmath>
        typedef long double ldouble;
        const int N=200005;
        ldouble p,LogF[N<<1];
        inline double getC(int n,int k)
        {
        	return LogF[n]-LogF[k]-LogF[n-k];
        }
        inline double solve(int n)
        {
        	double ans=0.0;
        	for(int i=0;i<=n;i++)
        	{	
        		ldouble c=getC(2*n-i,n);
        		ldouble v1=c+log(p)*(n+1)+log(1-p)*(n-i);
        		ldouble v2=c+log(p)*(n-i)+log(1-p)*(n+1);
        		ans+=i*(exp(v1)+exp(v2));
        	}return ans;
        }
        int main()
        {
        	int n,kase=0;LogF[0]=0;
        	for(int i=1;i<(N<<1);i++)LogF[i]=LogF[i-1]+log(i);
        	while(scanf("%d%Lf",&n,&p)==2)
        		printf("Case %d: %.6lf\n",++kase,solve(n));
        	return 0;	
        }
      

    如果有错欢迎指出~
    撒椛~(雾)

  • 相关阅读:
    java输入一个文件夹,查找出所有的文件列表
    java字节流到字符流的桥梁InputStreamReader,OutputStreamWriter
    java中获取用户输入字符,并将字符大写后显示
    mqtt
    tcpcopy
    lmax disruptor
    delete solr index
    http://book.douban.com/doulist/2545443/
    http://www.dottoro.com/
    最值得学习阅读的10个C语言开源项目代码
  • 原文地址:https://www.cnblogs.com/yoshinow2001/p/7517426.html
Copyright © 2011-2022 走看看