zoukankan      html  css  js  c++  java
  • (转)poj2109-Power of Cryptography

    Power of Cryptography

     

    Description

    Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
    This problem involves the efficient computation of integer roots of numbers. 
    Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

    Input

    The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

    Output

    For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

    Sample Input

    2 16
    3 27
    7 4357186184021382204544

    Sample Output

    4
    3
    1234

    题目大意:输入两个数,n,p。求一个整数k,使得k满足kn=p。

    大牛代码,膜拜!

     

    float:2^23 = 8388608,一共七位,这意味着最多能有7位有效数字,但绝对能保证的为6位,也即float的精度为6~7位有效数字;

    double:2^52 = 4503599627370496,一共16位,同理,double的精度为15~16位。

    首先,题目中的数据强度并不弱,这一点确实如题目中所说:“For all such pairs 1<=n<= 200, 1<=p<10101,所以,double型是不能精确地表示出所给数据,但是却能表示出一个近似值。

    当向double型变量中存入

    4357186184021382204544

    然后再输出,得到的是

    4357186184021382000000

    后六位的值变为了0,这一点和int型变量是有很大区别的。也就是说当存入double型变量的值超出了它的精度表示范围时,将低位的数据截断。

    在本题中,如果测试数据为:

    7     4357186184021382204544

    实际上所处理数据是:

    7     4357186184021382000000

    拿4357186184021382000000开7次方的结果自然就是1234。

    为什么不是1233或者1235呢?

    12337=4332529576639313702577

    12347=4357186184021382204544

    12357=4381962969567270546875

    可以看出在double型所能表示的精度范围内,它们三个值已经不同了。

     1 #include<cstdio>
     2 #include<cmath>
     3 
     4 int main()
     5 {
     6     int n;
     7     double p;
     8     while(scanf("%d%lf",&n,&p) != EOF)
     9     {
    10         printf("%.0lf
    ",pow(p,1.0/n));
    11     }
    12     return 0;
    13 }
  • 相关阅读:
    容器云技术:容器化微服务,Istio占C位出道
    如何用istio实现请求超时管理
    技术进阶:Kubernetes高级架构与应用状态部署
    如何基于 K8S 多租能力构建 Serverless Container
    面试题目<转载>
    PHP面试出场率较高的题目<转载>
    命名规范
    字符串大小写转换(三种方法)
    php反转输出字符串(两种方法)
    获取文件名后缀的方法
  • 原文地址:https://www.cnblogs.com/youdiankun/p/3716329.html
Copyright © 2011-2022 走看看