zoukankan      html  css  js  c++  java
  • 线程池技术之:ThreadPoolExecutor 源码解析

      java中的所说的线程池,一般都是围绕着 ThreadPoolExecutor 来展开的。其他的实现基本都是基于它,或者模仿它的。所以只要理解 ThreadPoolExecutor, 就相当于完全理解了线程池的精髓。

      其实要理解一个东西,一般地,我们最好是要抱着自己的疑问或者理解去的。否则,往往收获甚微。

      理解 ThreadPoolExecutor, 我们可以先理解一个线程池的意义: 本质上是提供预先定义好的n个线程,供调用方直接运行任务的一个工具。

    线程池解决的问题:

      1. 提高任务执行的响应速度,降低资源消耗。任务执行时,直接立即使用线程池提供的线程运行,避免了临时创建线程的CPU/内存开销,达到快速响应的效果。

      2. 提高线程的可管理性。线程总数可预知,避免用户主动创建无限多线程导致死机风险,还可以进行线程统一的分配、调优和监控。

      3. 避免对资源的过度使用。在超出预期的请求任务情况,响应策略可控。

    线程池提供的核心接口:

      要想使用线程池,自然是要理解其接口的。一般我们使用 ExecotorService 进行线程池的调用。然而,我们并不针对初学者。

      整体的接口如下:

       我们就挑几个常用接口探讨下:

        submit(Runnable task): 提交一个无需返回结果的任务。
        submit(Callable<T> task): 提交一个有返回结果的任务。
        invokeAll(Collection<? extends Callable<T>> tasks, long, TimeUnit): 同时执行n个任务并返回结果列表。
        shutdown(): 关闭线程程池。
        awaitTermination(long timeout, TimeUnit unit): 等待关闭结果,最长不超过timeout时间。

    以上是ThreadPoolExector 提供的特性,针对以上特性。

    我们应该要有自己的几个实现思路或疑问:

      1. 线程池如何接受任务?

      2. 线程如何运行任务?

      3. 线程池如何关闭?

    接下来,就让我们带着疑问去看实现吧。

    ThreadPoolExecutor 核心实现原理

    1. 线程池的处理流程

      我们首先重点要看的是,如何执行提交的任务。我可以通过下图来看看。

       总结描述下就是:

        1. 判断核心线程池是否已满,如果不是,则创建线程执行任务
        2. 如果核心线程池满了,判断队列是否满了,如果队列没满,将任务放在队列中
        3. 如果队列满了,则判断线程池是否已满,如果没满,创建线程执行任务
        4. 如果线程池也满了,则按照拒绝策略对任务进行处理

      另外,我们来看一下 ThreadPoolExecutor 的构造方法,因为这里会体现出每个属性的含义。

        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param threadFactory the factory to use when the executor
         *        creates a new thread
         * @param handler the handler to use when execution is blocked
         *        because the thread bounds and queue capacities are reached
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code threadFactory} or {@code handler} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }

      从构造方法可以看出 ThreadPoolExecutor 的主要参数 7 个,在其注释上也有说明功能,咱们翻译下每个参数的功能:

        corePoolSize: 线程池核心线程数(平时保留的线程数),使用时机: 在初始时刻,每次请求进来都会创建一个线程直到达到该size
        maximumPoolSize: 线程池最大线程数,使用时机: 当workQueue都放不下时,启动新线程,直到最大线程数,此时到达线程池的极限
        keepAliveTime/unit: 超出corePoolSize数量的线程的保留时间,unit为时间单位
        workQueue: 阻塞队列,当核心线程数达到或者超出后,会先尝试将任务放入该队列由各线程自行消费;  
            ArrayBlockingQueue: 构造函数一定要传大小
            LinkedBlockingQueue: 构造函数不传大小会默认为65536(Integer.MAX_VALUE ),当大量请求任务时,容易造成 内存耗尽。
            SynchronousQueue: 同步队列,一个没有存储空间的阻塞队列 ,将任务同步交付给工作线程。
            PriorityBlockingQueue: 优先队列
        threadFactory:线程工厂,用于线程需要创建时,调用其newThread()生产新线程使用
        handler: 饱和策略,当队列已放不下任务,且创建的线程已达到 maximum 后,则不能再处理任务,直接将任务交给饱和策略
            AbortPolicy: 直接抛弃(默认)
            CallerRunsPolicy: 用调用者的线程执行任务
            DiscardOldestPolicy: 抛弃队列中最久的任务
            DiscardPolicy: 抛弃当前任务

    2. submit 流程详解

      当调用 submit 方法,就是向线程池中提交一个任务,处理流程如步骤1所示。但是我们需要更深入理解。

      submit 方法是定义在 AbstractExecutorService 中,最终调用 ThreadPoolExecutor 的 execute 方法,即是模板方法模式的应用。

        // java.util.concurrent.AbstractExecutorService#submit(java.lang.Runnable, T)
        /**
         * @throws RejectedExecutionException {@inheritDoc}
         * @throws NullPointerException       {@inheritDoc}
         */
        public <T> Future<T> submit(Runnable task, T result) {
            if (task == null) throw new NullPointerException();
            // 封装任务和返回结果为 RunnableFuture, 统一交由具体的子类执行
            RunnableFuture<T> ftask = newTaskFor(task, result);
            // execute 将会调用 ThreadPoolExecutor 的实现,是我们讨论的重要核心
            execute(ftask);
            return ftask;
        }
        // FutureTask 是个重要的线程池组件,它承载了具体的任务执行流
        /**
         * Returns a {@code RunnableFuture} for the given runnable and default
         * value.
         *
         * @param runnable the runnable task being wrapped
         * @param value the default value for the returned future
         * @param <T> the type of the given value
         * @return a {@code RunnableFuture} which, when run, will run the
         * underlying runnable and which, as a {@code Future}, will yield
         * the given value as its result and provide for cancellation of
         * the underlying task
         * @since 1.6
         */
        protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
            return new FutureTask<T>(runnable, value);
        }
        
        // ThreadPoolExecutor 的任务提交过程
        // java.util.concurrent.ThreadPoolExecutor#execute
        /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            // ctl 是一个重要的控制全局状态的数据结构,定义为一个线程安全的 AtomicInteger
            // ctl = new AtomicInteger(ctlOf(RUNNING, 0));
            int c = ctl.get();
            // 当还没有达到核心线程池的数量时,直接添加1个新线程,然后让其执行任务即可
            if (workerCountOf(c) < corePoolSize) {
                // 2.1. 添加新线程,且执行command任务
                // 添加成功,即不需要后续操作了,添加失败,则说明外部环境变化了
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            // 当核心线程达到后,则尝试添加到阻塞队列中,具体添加方法由阻塞队列实现
            // isRunning => c < SHUTDOWN;
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                // 2.2. 添加队列成功后,还要再次检测线程池的运行状态,决定启动线程或者状态过期
                // 2.2.1. 当线程池已关闭,则将刚刚添加的任务移除,走reject策略
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                // 2.2.2. 当一个worker都没有时,则添加worker
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            // 当队列满后,则直接再创建新的线程运行,如果不能再创建线程了,则 reject
            else if (!addWorker(command, false))
                // 2.3. 拒绝策略处理
                reject(command);
        }

      通过上面这一小段代码,我们就已经完整地看到了。通过一个 ctl 变量进行全局状态控制,从而保证了线程安全性。整个框架并没有使用锁,但是却是线程安全的。

      整段代码刚好完整描述了线程池的执行流程:

        1. 判断核心线程池是否已满,如果不是,则创建线程执行任务;
        2. 如果核心线程池满了,判断队列是否满了,如果队列没满,将任务放在队列中;
        3. 如果队列满了,则判断线程池是否已满,如果没满,创建线程执行任务;
        4. 如果线程池也满了,则按照拒绝策略对任务进行处理;

    2.1. 添加新的worker

      一个worker,即是一个工作线程。

        /**
         * Checks if a new worker can be added with respect to current
         * pool state and the given bound (either core or maximum). If so,
         * the worker count is adjusted accordingly, and, if possible, a
         * new worker is created and started, running firstTask as its
         * first task. This method returns false if the pool is stopped or
         * eligible to shut down. It also returns false if the thread
         * factory fails to create a thread when asked.  If the thread
         * creation fails, either due to the thread factory returning
         * null, or due to an exception (typically OutOfMemoryError in
         * Thread.start()), we roll back cleanly.
         *
         * @param firstTask the task the new thread should run first (or
         * null if none). Workers are created with an initial first task
         * (in method execute()) to bypass queuing when there are fewer
         * than corePoolSize threads (in which case we always start one),
         * or when the queue is full (in which case we must bypass queue).
         * Initially idle threads are usually created via
         * prestartCoreThread or to replace other dying workers.
         *
         * @param core if true use corePoolSize as bound, else
         * maximumPoolSize. (A boolean indicator is used here rather than a
         * value to ensure reads of fresh values after checking other pool
         * state).
         * @return true if successful
         */
        private boolean addWorker(Runnable firstTask, boolean core) {
            // 为确保线程安全,进行CAS反复重试
            retry:
            for (;;) {
                int c = ctl.get();
                // 获取runState , c 的高位存储
                // c & ~CAPACITY;
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                // 已经shutdown, firstTask 为空的添加并不会成功
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    // 如果超出最大允许创建的线程数,则直接失败
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    // CAS 更新worker+1数,成功则说明占位成功退出retry,后续的添加操作将是安全的,失败则说明已有其他线程变更该值
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    // runState 变更,则退出到 retry 重新循环 
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
            // 以下为添加 worker 过程
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                // 使用 Worker 封闭 firstTask 任务,后续运行将由 Worker 接管
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    // 添加 worker 的过程,需要保证线程安全
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
                        // SHUTDOWN 情况下还是会创建 Worker, 但是后续检测将会失败
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            // 既然是新添加的线程,就不应该是 alive 状态
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            // workers 只是一个工作线程的容器,使用 HashSet 承载
                            // private final HashSet<Worker> workers = new HashSet<Worker>();
                            workers.add(w);
                            int s = workers.size();
                            // 维护一个全局达到过的最大线程数计数器
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    // worker 添加成功后,进行将worker启起来,里面应该是有一个 死循环,一直在获取任务
                    // 不然怎么运行添加到队列里的任务呢?
                    if (workerAdded) {
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                // 如果任务启动失败,则必须进行清理,返回失败
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
        // 大概添加 worker 的框架明白了,重点对象是 Worker, 我们稍后再讲
        // 现在先来看看,添加失败的情况,如何进行
        /**
         * Rolls back the worker thread creation.
         * - removes worker from workers, if present
         * - decrements worker count
         * - rechecks for termination, in case the existence of this
         *   worker was holding up termination
         */
        private void addWorkerFailed(Worker w) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                if (w != null)
                    workers.remove(w);
                // ctl 中的 workerCount - 1 , CAS 实现
                decrementWorkerCount();
                // 尝试处理空闲线程
                tryTerminate();
            } finally {
                mainLock.unlock();
            }
        }
        /**
         * Decrements the workerCount field of ctl. This is called only on
         * abrupt termination of a thread (see processWorkerExit). Other
         * decrements are performed within getTask.
         */
        private void decrementWorkerCount() {
            do {} while (! compareAndDecrementWorkerCount(ctl.get()));
        }
        // 停止可能启动的 worker
        /**
         * Transitions to TERMINATED state if either (SHUTDOWN and pool
         * and queue empty) or (STOP and pool empty).  If otherwise
         * eligible to terminate but workerCount is nonzero, interrupts an
         * idle worker to ensure that shutdown signals propagate. This
         * method must be called following any action that might make
         * termination possible -- reducing worker count or removing tasks
         * from the queue during shutdown. The method is non-private to
         * allow access from ScheduledThreadPoolExecutor.
         */
        final void tryTerminate() {
            for (;;) {
                int c = ctl.get();
                // 线程池正在运行、正在清理、已关闭但队列还未处理完,都不会进行 terminate 操作
                if (isRunning(c) ||
                    // c >= TIDYING
                    runStateAtLeast(c, TIDYING) ||
                    (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                    return;
                if (workerCountOf(c) != 0) { // Eligible to terminate
                    // 停止线程的两个方式之一,只中断一个 worker
                    interruptIdleWorkers(ONLY_ONE);
                    return;
                }
                // 以下为整个线程池的后置操作
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // 设置正在清理标识
                    if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                        try {
                            // 线程池已终止的钩子方法,默认实现为空
                            terminated();
                        } finally {
                            ctl.set(ctlOf(TERMINATED, 0));
                            // 此处 termination 为唤醒等待关闭的线程
                            termination.signalAll();
                        }
                        return;
                    }
                } finally {
                    mainLock.unlock();
                }
                // else retry on failed CAS
            }
        }
        /**
         * Interrupts threads that might be waiting for tasks (as
         * indicated by not being locked) so they can check for
         * termination or configuration changes. Ignores
         * SecurityExceptions (in which case some threads may remain
         * uninterrupted).
         *
         * @param onlyOne If true, interrupt at most one worker. This is
         * called only from tryTerminate when termination is otherwise
         * enabled but there are still other workers.  In this case, at
         * most one waiting worker is interrupted to propagate shutdown
         * signals in case all threads are currently waiting.
         * Interrupting any arbitrary thread ensures that newly arriving
         * workers since shutdown began will also eventually exit.
         * To guarantee eventual termination, it suffices to always
         * interrupt only one idle worker, but shutdown() interrupts all
         * idle workers so that redundant workers exit promptly, not
         * waiting for a straggler task to finish.
         */
        private void interruptIdleWorkers(boolean onlyOne) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // 迭代所有 worker
                for (Worker w : workers) {
                    Thread t = w.thread;
                    // 获取到 worker 的锁之后,再进行 interrupt
                    if (!t.isInterrupted() && w.tryLock()) {
                        try {
                            t.interrupt();
                        } catch (SecurityException ignore) {
                        } finally {
                            w.unlock();
                        }
                    }
                    // 只中断一个 worker, 立即返回, 不保证 interrupt 成功
                    if (onlyOne)
                        break;
                }
            } finally {
                mainLock.unlock();
            }
        }

    2.2. 当添加队列成功后,发现线程池状态变更,需要进行移除队列操作

        /**
         * Removes this task from the executor's internal queue if it is
         * present, thus causing it not to be run if it has not already
         * started.
         *
         * <p>This method may be useful as one part of a cancellation
         * scheme.  It may fail to remove tasks that have been converted
         * into other forms before being placed on the internal queue. For
         * example, a task entered using {@code submit} might be
         * converted into a form that maintains {@code Future} status.
         * However, in such cases, method {@link #purge} may be used to
         * remove those Futures that have been cancelled.
         *
         * @param task the task to remove
         * @return {@code true} if the task was removed
         */
        public boolean remove(Runnable task) {
            // 此移除不一定能成功
            boolean removed = workQueue.remove(task);
            // 上面已经看过,它会尝试停止一个 worker 线程
            tryTerminate(); // In case SHUTDOWN and now empty
            return removed;
        }

    3. 添加失败进行执行拒绝策略

        /**
         * Invokes the rejected execution handler for the given command.
         * Package-protected for use by ScheduledThreadPoolExecutor.
         */
        final void reject(Runnable command) {
            // 拒绝策略是在构造方法时传入的,默认为 RejectedExecutionHandler
            // 即用户只需实现 rejectedExecution 方法,即可以自定义拒绝策略了
            handler.rejectedExecution(command, this);
        }

    4. Worker 的工作机制

      从上面的实现中,我们可以看到,主要是对 Worker 的添加和 workQueue 的添加,所以具体的工作是由谁完成呢?自然就是 Worker 了。

            // Worker 的构造方法,主要是接受一个 task, 可以为 null, 如果非null, 将在不久的将来被执行
            // private final class Worker extends AbstractQueuedSynchronizer implements Runnable
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                // 将 Worker 自身当作一个 任务,绑定到 worker.thread 中
                // thread 启动时,worker 就启动了
                this.thread = getThreadFactory().newThread(this);
            }
            // Worker 的主要工作实现,通过一个循环扫描实现        
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                // 调用 ThreadPoolExecutor 外部实现的 runWorker 方法
                runWorker(this);
            }
            
        /**
         * Main worker run loop.  Repeatedly gets tasks from queue and
         * executes them, while coping with a number of issues:
         *
         * 1. We may start out with an initial task, in which case we
         * don't need to get the first one. Otherwise, as long as pool is
         * running, we get tasks from getTask. If it returns null then the
         * worker exits due to changed pool state or configuration
         * parameters.  Other exits result from exception throws in
         * external code, in which case completedAbruptly holds, which
         * usually leads processWorkerExit to replace this thread.
         *
         * 2. Before running any task, the lock is acquired to prevent
         * other pool interrupts while the task is executing, and then we
         * ensure that unless pool is stopping, this thread does not have
         * its interrupt set.
         *
         * 3. Each task run is preceded by a call to beforeExecute, which
         * might throw an exception, in which case we cause thread to die
         * (breaking loop with completedAbruptly true) without processing
         * the task.
         *
         * 4. Assuming beforeExecute completes normally, we run the task,
         * gathering any of its thrown exceptions to send to afterExecute.
         * We separately handle RuntimeException, Error (both of which the
         * specs guarantee that we trap) and arbitrary Throwables.
         * Because we cannot rethrow Throwables within Runnable.run, we
         * wrap them within Errors on the way out (to the thread's
         * UncaughtExceptionHandler).  Any thrown exception also
         * conservatively causes thread to die.
         *
         * 5. After task.run completes, we call afterExecute, which may
         * also throw an exception, which will also cause thread to
         * die. According to JLS Sec 14.20, this exception is the one that
         * will be in effect even if task.run throws.
         *
         * The net effect of the exception mechanics is that afterExecute
         * and the thread's UncaughtExceptionHandler have as accurate
         * information as we can provide about any problems encountered by
         * user code.
         *
         * @param w the worker
         */
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                // 不停地从 workQueue 中获取任务,然后执行,就是这么个逻辑
                // getTask() 会阻塞式获取,所以 Worker 往往不会立即退出 
                while (task != null || (task = getTask()) != null) {
                    // 执行过程中是不允许并发的,即同时只能一个 task 在运行,此时也不允许进行 interrupt
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    // 检测是否已被线程池是否停止 或者当前 worker 被中断
                    // STOP = 1 << COUNT_BITS;
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        // 中断信息传递
                        wt.interrupt();
                    try {
                        // 任务开始前 切点,默认为空执行
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            // 直接调用任务的run方法, 具体的返回结果,会被 FutureTask 封装到 某个变量中
                            // 可以参考以前的文章 (FutureTask是怎样获取到异步执行结果的? https://www.cnblogs.com/yougewe/p/11666284.html
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            // 任务开始后 切点,默认为空执行
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                // 正常退出,有必要的话,可能重新将 Worker 添加进来
                completedAbruptly = false;
            } finally {
                // 处理退出后下一步操作,可能重新添加 Worker
                processWorkerExit(w, completedAbruptly);
            }
        }
        
        /**
         * Performs cleanup and bookkeeping for a dying worker. Called
         * only from worker threads. Unless completedAbruptly is set,
         * assumes that workerCount has already been adjusted to account
         * for exit.  This method removes thread from worker set, and
         * possibly terminates the pool or replaces the worker if either
         * it exited due to user task exception or if fewer than
         * corePoolSize workers are running or queue is non-empty but
         * there are no workers.
         *
         * @param w the worker
         * @param completedAbruptly if the worker died due to user exception
         */
        private void processWorkerExit(Worker w, boolean completedAbruptly) {
            if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
                decrementWorkerCount();
    
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                completedTaskCount += w.completedTasks;
                workers.remove(w);
            } finally {
                mainLock.unlock();
            }
    
            tryTerminate();
    
            int c = ctl.get();
            if (runStateLessThan(c, STOP)) {
                // 在 Worker 正常退出的情况下,检查是否超时导致,维持最小线程数
                if (!completedAbruptly) {
                    int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                    if (min == 0 && ! workQueue.isEmpty())
                        min = 1;
                    // 如果满足最小线程要求,则直接返回
                    if (workerCountOf(c) >= min)
                        return; // replacement not needed
                }
                // 否则再添加一个Worker到线程池中备用
                // 非正常退出,会直接再添加一个Worker
                addWorker(null, false);
            }
        }
        
        /**
         * Performs blocking or timed wait for a task, depending on
         * current configuration settings, or returns null if this worker
         * must exit because of any of:
         * 1. There are more than maximumPoolSize workers (due to
         *    a call to setMaximumPoolSize).
         * 2. The pool is stopped.
         * 3. The pool is shutdown and the queue is empty.
         * 4. This worker timed out waiting for a task, and timed-out
         *    workers are subject to termination (that is,
         *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
         *    both before and after the timed wait, and if the queue is
         *    non-empty, this worker is not the last thread in the pool.
         *
         * @return task, or null if the worker must exit, in which case
         *         workerCount is decremented
         */
        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                // 如果进行了 shutdown, 且队列为空, 则需要将 worker 退出
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    // do {} while (! compareAndDecrementWorkerCount(ctl.get()));
                    decrementWorkerCount();
                    return null;
                }
    
                int wc = workerCountOf(c);
    
                // Are workers subject to culling?
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
                // 线程数据大于最大允许线程,需要删除多余的 Worker
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
    
                try {
                    // 如果开户了超时删除功能,则使用 poll, 否则使用 take() 进行阻塞获取
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    // 获取到任务,则可以进行执行了
                    if (r != null)
                        return r;
                    // 如果有超时设置,则会在下一循环时退出
                    timedOut = true;
                }
                // 忽略中断异常
                // 在这种情况下,Worker如何响应外部的中断请求呢??? 思考
                catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }

      所以,Worker的作用就体现出来了,一个循环取任务执行任务过程:

        1. 有一个主循环一直进行任务的获取;
        2. 针对有超时的设置,会使用poll进行获取任务,如果超时,则 Worker 将会退出循环结束线程;
        3. 无超时的设置,则会使用 take 进行阻塞式获取,直到有值;
        4. 获取任务执行前置+业务+后置任务;
        5. 当获取到null的任务之后,当前Worker将会结束;
        6. 当前Worker结束后,将会判断是否有必要维护最低Worker数,从而决定是否再添加Worker进来。

      还是借用一个网上同学比较通用的一个图来表述下 Worker/ThreadPoolExecutor 的工作流程吧(已经很完美,不需要再造这轮子了)

    5. shutdown 操作实现

      ThreadPoolExecutor 是通过 ctl 这个变量进行全局状态维护的,shutdown 在线程池中也是表现为一个状态,所以应该是比较简单的。

        /**
         * Initiates an orderly shutdown in which previously submitted
         * tasks are executed, but no new tasks will be accepted.
         * Invocation has no additional effect if already shut down.
         *
         * <p>This method does not wait for previously submitted tasks to
         * complete execution.  Use {@link #awaitTermination awaitTermination}
         * to do that.
         *
         * @throws SecurityException {@inheritDoc}
         */
        public void shutdown() {
            // 为保证线程安全,使用 mainLock
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // SecurityManager 检查
                checkShutdownAccess();
                // 设置状态为 SHUTDOWN
                advanceRunState(SHUTDOWN);
                // 中断空闲的 Worker, 即相当于依次关闭每个空闲线程
                interruptIdleWorkers();
                // 关闭钩子,默认实现为空操作,为方便子类实现自定义清理功能
                onShutdown(); // hook for ScheduledThreadPoolExecutor
            } finally {
                mainLock.unlock();
            }
            //
            tryTerminate();
        }
        /**
         * Transitions runState to given target, or leaves it alone if
         * already at least the given target.
         *
         * @param targetState the desired state, either SHUTDOWN or STOP
         *        (but not TIDYING or TERMINATED -- use tryTerminate for that)
         */
        private void advanceRunState(int targetState) {
            for (;;) {
                int c = ctl.get();
                // 自身CAS更新成功或者被其他线程更新成功
                if (runStateAtLeast(c, targetState) ||
                    ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                    break;
            }
        }
        // 关闭空闲线程(非 running 状态)
        /**
         * Common form of interruptIdleWorkers, to avoid having to
         * remember what the boolean argument means.
         */
        private void interruptIdleWorkers() {
            // 上文已介绍, 此处 ONLY_ONE 为 false, 即是最大可能地中断所有 Worker
            interruptIdleWorkers(false);
        }
        
        与 shutdown 对应的,有一个 shutdownNow, 其语义是 立即停止所有任务。
        /**
         * Attempts to stop all actively executing tasks, halts the
         * processing of waiting tasks, and returns a list of the tasks
         * that were awaiting execution. These tasks are drained (removed)
         * from the task queue upon return from this method.
         *
         * <p>This method does not wait for actively executing tasks to
         * terminate.  Use {@link #awaitTermination awaitTermination} to
         * do that.
         *
         * <p>There are no guarantees beyond best-effort attempts to stop
         * processing actively executing tasks.  This implementation
         * cancels tasks via {@link Thread#interrupt}, so any task that
         * fails to respond to interrupts may never terminate.
         *
         * @throws SecurityException {@inheritDoc}
         */
        public List<Runnable> shutdownNow() {
            List<Runnable> tasks;
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                // 与 shutdown 的差别,设置的状态不一样
                advanceRunState(STOP);
                // 强行中断线程
                interruptWorkers();
                // 将未完成的任务返回
                tasks = drainQueue();
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
            return tasks;
        }
    
        /**
         * Interrupts all threads, even if active. Ignores SecurityExceptions
         * (in which case some threads may remain uninterrupted).
         */
        private void interruptWorkers() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (Worker w : workers)
                    // 调用 worker 的提供的中断方法
                    w.interruptIfStarted();
            } finally {
                mainLock.unlock();
            }
        }
            // ThreadPoolExecutor.Worker#interruptIfStarted
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        // 直接调用任务的 interrupt
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }

    6. invokeAll 的实现方式

      invokeAll, 望文生义,即是调用所有给定的任务。想来应该是一个个地添加任务到线程池队列吧。

        // invokeAll 的方法直接在抽象方便中就实现了,它的语义是同时执行n个任务,并同步等待结果返回
        // java.util.concurrent.AbstractExecutorService#invokeAll(java.util.Collection<? extends java.util.concurrent.Callable<T>>)
        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
            throws InterruptedException {
            if (tasks == null)
                throw new NullPointerException();
            ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
            boolean done = false;
            try {
                for (Callable<T> t : tasks) {
                    RunnableFuture<T> f = newTaskFor(t);
                    futures.add(f);
                    // 依次调用各子类的实现,添加任务
                    execute(f);
                }
                for (int i = 0, size = futures.size(); i < size; i++) {
                    Future<T> f = futures.get(i);
                    if (!f.isDone()) {
                        try {
                            // 依次等待执行结果
                            f.get();
                        } catch (CancellationException ignore) {
                        } catch (ExecutionException ignore) {
                        }
                    }
                }
                done = true;
                return futures;
            } finally {
                if (!done)
                    for (int i = 0, size = futures.size(); i < size; i++)
                        futures.get(i).cancel(true);
            }
        }

      实现很简单,都是些外围调用。

    7. ThreadPoolExecutor 的状态值的设计

      通过上面的过程,可以看到,整个ThreadPoolExecutor 非状态的依赖是非常强的。所以一个好的状态值的设计就显得很重要了,runState 代表线程池或者 Worker 的运行状态。如下:

        // runState is stored in the high-order bits
        // 整个状态使值使用 ctl 的高三位值进行控制, COUNT_BITS=29
        // 1110 0000 0000 0000
        private static final int RUNNING    = -1 << COUNT_BITS;
        // 0000 0000 0000 0000
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        // 0010 0000 0000 0000
        private static final int STOP       =  1 << COUNT_BITS;
        // 0100 0000 0000 0000
        private static final int TIDYING    =  2 << COUNT_BITS;
        // 0110 0000 0000 0000
        private static final int TERMINATED =  3 << COUNT_BITS;
        // 整个状态值的大小顺序主: RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
        
        // 而低 29位,则用来保存 worker 的数量,当worker增加时,只要将整个 ctl 增加即可。
        // 0001 1111 1111 1111, 即是最大的 worker 数量
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // 整个 ctl 描述为一个 AtomicInteger, 功能如下:
        /**
         * The main pool control state, ctl, is an atomic integer packing
         * two conceptual fields
         *   workerCount, indicating the effective number of threads
         *   runState,    indicating whether running, shutting down etc
         *
         * In order to pack them into one int, we limit workerCount to
         * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
         * billion) otherwise representable. If this is ever an issue in
         * the future, the variable can be changed to be an AtomicLong,
         * and the shift/mask constants below adjusted. But until the need
         * arises, this code is a bit faster and simpler using an int.
         *
         * The workerCount is the number of workers that have been
         * permitted to start and not permitted to stop.  The value may be
         * transiently different from the actual number of live threads,
         * for example when a ThreadFactory fails to create a thread when
         * asked, and when exiting threads are still performing
         * bookkeeping before terminating. The user-visible pool size is
         * reported as the current size of the workers set.
         *
         * The runState provides the main lifecycle control, taking on values:
         *
         *   RUNNING:  Accept new tasks and process queued tasks
         *   SHUTDOWN: Don't accept new tasks, but process queued tasks
         *   STOP:     Don't accept new tasks, don't process queued tasks,
         *             and interrupt in-progress tasks
         *   TIDYING:  All tasks have terminated, workerCount is zero,
         *             the thread transitioning to state TIDYING
         *             will run the terminated() hook method
         *   TERMINATED: terminated() has completed
         *
         * The numerical order among these values matters, to allow
         * ordered comparisons. The runState monotonically increases over
         * time, but need not hit each state. The transitions are:
         *
         * RUNNING -> SHUTDOWN
         *    On invocation of shutdown(), perhaps implicitly in finalize()
         * (RUNNING or SHUTDOWN) -> STOP
         *    On invocation of shutdownNow()
         * SHUTDOWN -> TIDYING
         *    When both queue and pool are empty
         * STOP -> TIDYING
         *    When pool is empty
         * TIDYING -> TERMINATED
         *    When the terminated() hook method has completed
         *
         * Threads waiting in awaitTermination() will return when the
         * state reaches TERMINATED.
         *
         * Detecting the transition from SHUTDOWN to TIDYING is less
         * straightforward than you'd like because the queue may become
         * empty after non-empty and vice versa during SHUTDOWN state, but
         * we can only terminate if, after seeing that it is empty, we see
         * that workerCount is 0 (which sometimes entails a recheck -- see
         * below).
         */
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

    8. awaitTermination 等待关闭完成

      从上面的 shutdown, 可以看到,只是写了 SHUTDOWN 标识后,尝试尽可能地中断停止Worker线程,但并不保证中断成功。要想保证停止完成,需要有另外的机制来保证。从 awaitTermination 的语义来说,它是能保证任务停止完成的,那么它是如何保证的呢?

        // ThreadPoolExecutor.awaitTermination()
        public boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException {
            long nanos = unit.toNanos(timeout);
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (;;) {
                    // 只是循环 ctl 状态, 只要 状态为 TERMINATED 状态,则说明已经关闭成功
                    // 此处 termination 的状态触发是在 tryTerminate 中触发的
                    if (runStateAtLeast(ctl.get(), TERMINATED))
                        return true;
                    if (nanos <= 0)
                        return false;
                    nanos = termination.awaitNanos(nanos);
                }
            } finally {
                mainLock.unlock();
            }
        }
        

      看起来, awaitTermination 并没有什么特殊操作,而是一直在等待。所以 TERMINATED 是 Worker 自行发生的动作。

      那是在哪里做的操作呢?其实是在获取任务的时候,会检测当前状态是否是 SHUTDOWN, 如果是SHUTDOWN且 队列为空,则会触发获取任务的返回null.从而结束当前 Worker. 

      Worker 在结束前会调用 processWorkerExit() 方法,里面会再次调用 tryTerminate(), 当所有 Worker 都运行到这个点后, awaitTermination() 就会收到通知了。(注意: processWorkerExit() 会在每次运行后进行 addWorker() 尝试,但是在 SHUTDOWN 状态的添加操作总是失败的,所以不用考虑)

      到此,你是否可以解答前面的几个问题了呢?

      

  • 相关阅读:
    结对 总结
    ”耐撕“团队 2016.3.29 站立会议
    词频统计 List Array
    基本数据结构简述
    深入理解HashMap
    常用排序算法Java实现
    Spring核心组件知识梳理
    HashMap中使用自定义类作为Key时,为何要重写HashCode和Equals方法
    Nginx是什么东东?
    Java中常用的四种线程池
  • 原文地址:https://www.cnblogs.com/yougewe/p/12267274.html
Copyright © 2011-2022 走看看