zoukankan      html  css  js  c++  java
  • java容器中的几种计数方法浅谈

      本文讨论java集合容器中的几种元素数量获取的方式,命题很小,但是也足以让我们思考一些东西。

      所谓计数:即是给出所在容器的元素总数的方式。一般能想到的就是两种方式:一是使用某个字段直接存储该计数值,二是在请求计数值时临时去计算所有元素数量。貌似本文的答案已经出来了。好吧,那我们还是从源码的角度来验证下想法吧:

      一般在java的集合容器中,可以分为普通容器和并发容器,我们就姑且以这种方式来划分下,验证下其实现计数的方式吧!

    1. 普通容器 --HashMap

      一般非并发容器在进行增删改时,都会同时维护一个count值,如hashmap中的实现:

        // HashMap 增加和修改都在此实现
        /**
         * Implements Map.put and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {
                Node<K,V> e; K k;
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            // 直接对size进行增加1即可, 如果是更新key的值,则不会运行到此处,即不会进行相加
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }
        // 删除元素的实现,同时维护 size 大小
        /**
         * Implements Map.remove and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to match if matchValue, else ignored
         * @param matchValue if true only remove if value is equal
         * @param movable if false do not move other nodes while removing
         * @return the node, or null if none
         */
        final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
            Node<K,V>[] tab; Node<K,V> p; int n, index;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
                Node<K,V> node = null, e; K k; V v;
                // 先查找node所在的位置
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                else if ((e = p.next) != null) {
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                    else {
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                    else if (node == p)
                        tab[index] = node.next;
                    else
                        p.next = node.next;
                    ++modCount;
                    // 直接减小size即可
                    --size;
                    afterNodeRemoval(node);
                    return node;
                }
            }
            return null;
        }

      因为有了增删改时对计数器的维护,所以在想要获取总数时,就容易许多了。只需把size字段返回即可。

        // HashMap.size()
        /**
         * Returns the number of key-value mappings in this map.
         *
         * @return the number of key-value mappings in this map
         */
        public int size() {
            return size;
        }

      所以,在这种情况下,获取计数值的方式非常简单。但是不管怎么样,size字段对外部是不可见的,因为它是容器内部的一个实现逻辑,它完全在将来的某个时刻改变掉。即 size() != size .

    2. 普通容器 --LinkedList

      看完hash类的计数实现,咱们再来看另外一个类型的容器LinkedList:

        // LinkedList.add(E)   添加一个元素
        public boolean add(E e) {
            linkLast(e);
            return true;
        }
        /**
         * Links e as last element.
         */
        void linkLast(E e) {
            final Node<E> l = last;
            final Node<E> newNode = new Node<>(l, e, null);
            last = newNode;
            if (l == null)
                first = newNode;
            else
                l.next = newNode;
            // 同样,直接使用一个 size 计数器统计即可
            size++;
            modCount++;
        }
        
        // 删除一个元素, 同时维护 size 字段
        public E removeFirst() {
            final Node<E> f = first;
            if (f == null)
                throw new NoSuchElementException();
            return unlinkFirst(f);
        }    
        /**
         * Unlinks non-null first node f.
         */
        private E unlinkFirst(Node<E> f) {
            // assert f == first && f != null;
            final E element = f.item;
            final Node<E> next = f.next;
            f.item = null;
            f.next = null; // help GC
            first = next;
            if (next == null)
                last = null;
            else
                next.prev = null;
            // 元素计数减1
            size--;
            modCount++;
            return element;
        }
    
        // 同样,统计元素数量时,直接返回size即可
        public int size() {
            return size;
        }

      可见,LinkedList 也同样是简单地维护一个计数器字段,从而实现了高效地计数方法。而这简单地实现,则是基于单线程的访问的,它同时维护一个计数字段,基本没有多少开销,却给取值时带来了便利。

      总结: 普通容器直接维护一个计数器字段,可以很方便地进行大小统计操作。

    3. 并发容器 --ConcurrentHashMap

      而对于并发容器,则可能会不一样些,但也有一些情况是一样的。比较,HashTable, 直接使用 synchronized 来保证线程安全,则它也同样可以直接使用一个size即可完成元素大小的统计。事实上,有些版本的HashTable仅仅是在HashMap的上面加上了synchronizd锁而已(有些版本则是 不一样的哦),细节咱们无需再看。

      而稍微有点不一样的如: ConcurrentHashMap.size(), 早期的 ConcurrentHashMap 使用分段锁,则需要统计各segement的元素,相加起来然后得到整体元素大小. 而jdk1.8中,已经放弃使用分段锁来实现高性能安全的hash容器了,而是直接使用 synchronized + CAS + 红黑树 实现. 那么,我们来看看其实现元素统计这一功能的实现有何不同吧!

        // ConcurrentHashMap.putVal()  新增或修改一个元素
        /** Implementation for put and putIfAbsent */
        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();
            int hash = spread(key.hashCode());
            int binCount = 0;
            for (Node<K,V>[] tab = table;;) {
                Node<K,V> f; int n, i, fh;
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                    if (casTabAt(tab, i, null,
                                 new Node<K,V>(hash, key, value, null)))
                        break;                   // no lock when adding to empty bin
                }
                else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    V oldVal = null;
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K,V> e = f;; ++binCount) {
                                    K ek;
                                    if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                         (ek != null && key.equals(ek)))) {
                                        oldVal = e.val;
                                        if (!onlyIfAbsent)
                                            e.val = value;
                                        break;
                                    }
                                    Node<K,V> pred = e;
                                    if ((e = e.next) == null) {
                                        pred.next = new Node<K,V>(hash, key,
                                                                  value, null);
                                        break;
                                    }
                                }
                            }
                            else if (f instanceof TreeBin) {
                                Node<K,V> p;
                                binCount = 2;
                                if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                               value)) != null) {
                                    oldVal = p.val;
                                    if (!onlyIfAbsent)
                                        p.val = value;
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        if (oldVal != null)
                            return oldVal;
                        break;
                    }
                }
            }
            // 主要是在进行新增成功时,再进行计数器的操作, 看起来不是 ++size 这么简单了
            addCount(1L, binCount);
            return null;
        }
    
        // 这个计数的相加看起来相当复杂
        /**
         * Adds to count, and if table is too small and not already
         * resizing, initiates transfer. If already resizing, helps
         * perform transfer if work is available.  Rechecks occupancy
         * after a transfer to see if another resize is already needed
         * because resizings are lagging additions.
         *
         * @param x the count to add
         * @param check if <0, don't check resize, if <= 1 only check if uncontended
         */
        private final void addCount(long x, int check) {
            CounterCell[] as; long b, s;
            // 使用 CounterCell 来实现计数操作
            // 使用 CAS 保证更新计数时只会有一个线程成功
            if ((as = counterCells) != null ||
                !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
                CounterCell a; long v; int m;
                boolean uncontended = true;
                if (as == null || (m = as.length - 1) < 0 ||
                    // 使用一个类似随机负载均衡的方式,将计数值随机添加到 CounterCell 的某个值下面,减少多线程竞争的可能性
                    (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                    // 通过cas将计数值x添加到 CounterCell 的 value 字段中
                    !(uncontended =
                      U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                    // 如果上面添加失败,则使用 fullAddCount 进行重新添加该计数
                    fullAddCount(x, uncontended);
                    return;
                }
                if (check <= 1)
                    return;
                // 基于 CounterCell 做一此汇总操作
                s = sumCount();
            }
            // 在进行put值时, check的值都是大于等于0的
            if (check >= 0) {
                Node<K,V>[] tab, nt; int n, sc;
                // rehash 处理
                while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                       (n = tab.length) < MAXIMUM_CAPACITY) {
                    int rs = resizeStamp(n);
                    if (sc < 0) {
                        if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                            break;
                        if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                            transfer(tab, nt);
                    }
                    else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                                 (rs << RESIZE_STAMP_SHIFT) + 2))
                        // 辅助进行hash扩容
                        transfer(tab, null);
                    s = sumCount();
                }
            }
        }
        // fullAddCount 比较复杂, 它的目的是为了保证多线程可以快速进行添加完成, 目标很简单, 即向数组 CounterCell 中添加一个值 x
        // See LongAdder version for explanation
        private final void fullAddCount(long x, boolean wasUncontended) {
            int h;
            if ((h = ThreadLocalRandom.getProbe()) == 0) {
                ThreadLocalRandom.localInit();      // force initialization
                h = ThreadLocalRandom.getProbe();
                wasUncontended = true;
            }
            boolean collide = false;                // True if last slot nonempty
            for (;;) {
                CounterCell[] as; CounterCell a; int n; long v;
                if ((as = counterCells) != null && (n = as.length) > 0) {
                    if ((a = as[(n - 1) & h]) == null) {
                        if (cellsBusy == 0) {            // Try to attach new Cell
                            CounterCell r = new CounterCell(x); // Optimistic create
                            if (cellsBusy == 0 &&
                                U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                                boolean created = false;
                                try {               // Recheck under lock
                                    CounterCell[] rs; int m, j;
                                    if ((rs = counterCells) != null &&
                                        (m = rs.length) > 0 &&
                                        rs[j = (m - 1) & h] == null) {
                                        rs[j] = r;
                                        created = true;
                                    }
                                } finally {
                                    cellsBusy = 0;
                                }
                                if (created)
                                    break;
                                continue;           // Slot is now non-empty
                            }
                        }
                        collide = false;
                    }
                    else if (!wasUncontended)       // CAS already known to fail
                        wasUncontended = true;      // Continue after rehash
                    else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                        break;
                    else if (counterCells != as || n >= NCPU)
                        collide = false;            // At max size or stale
                    else if (!collide)
                        collide = true;
                    else if (cellsBusy == 0 &&
                             U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                        try {
                            if (counterCells == as) {// Expand table unless stale
                                CounterCell[] rs = new CounterCell[n << 1];
                                for (int i = 0; i < n; ++i)
                                    rs[i] = as[i];
                                counterCells = rs;
                            }
                        } finally {
                            cellsBusy = 0;
                        }
                        collide = false;
                        continue;                   // Retry with expanded table
                    }
                    h = ThreadLocalRandom.advanceProbe(h);
                }
                else if (cellsBusy == 0 && counterCells == as &&
                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    boolean init = false;
                    try {                           // Initialize table
                        if (counterCells == as) {
                            CounterCell[] rs = new CounterCell[2];
                            rs[h & 1] = new CounterCell(x);
                            counterCells = rs;
                            init = true;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    if (init)
                        break;
                }
                else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                    break;                          // Fall back on using base
            }
        }
        // ConcurrentHashMap.remove 删除元素
        /**
         * Implementation for the four public remove/replace methods:
         * Replaces node value with v, conditional upon match of cv if
         * non-null.  If resulting value is null, delete.
         */
        final V replaceNode(Object key, V value, Object cv) {
            int hash = spread(key.hashCode());
            for (Node<K,V>[] tab = table;;) {
                Node<K,V> f; int n, i, fh;
                if (tab == null || (n = tab.length) == 0 ||
                    (f = tabAt(tab, i = (n - 1) & hash)) == null)
                    break;
                else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    V oldVal = null;
                    boolean validated = false;
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                validated = true;
                                for (Node<K,V> e = f, pred = null;;) {
                                    K ek;
                                    if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                         (ek != null && key.equals(ek)))) {
                                        V ev = e.val;
                                        if (cv == null || cv == ev ||
                                            (ev != null && cv.equals(ev))) {
                                            oldVal = ev;
                                            if (value != null)
                                                e.val = value;
                                            // 删除元素
                                            else if (pred != null)
                                                pred.next = e.next;
                                            else
                                                setTabAt(tab, i, e.next);
                                        }
                                        break;
                                    }
                                    pred = e;
                                    if ((e = e.next) == null)
                                        break;
                                }
                            }
                            else if (f instanceof TreeBin) {
                                validated = true;
                                TreeBin<K,V> t = (TreeBin<K,V>)f;
                                TreeNode<K,V> r, p;
                                if ((r = t.root) != null &&
                                    (p = r.findTreeNode(hash, key, null)) != null) {
                                    V pv = p.val;
                                    if (cv == null || cv == pv ||
                                        (pv != null && cv.equals(pv))) {
                                        oldVal = pv;
                                        if (value != null)
                                            p.val = value;
                                        // 删除元素
                                        else if (t.removeTreeNode(p))
                                            setTabAt(tab, i, untreeify(t.first));
                                    }
                                }
                            }
                        }
                    }
                    if (validated) {
                        if (oldVal != null) {
                            // value = null, 代表需要将元素删除,所以需要对计数器做减1操作
                            if (value == null)
                                addCount(-1L, -1);
                            return oldVal;
                        }
                        break;
                    }
                }
            }
            return null;
        }

      同样是由于在增删时,维护一个计数器(CounterCell数组), 所以对于返回计数值操作则会比较简单化:

        // ConcurrentHashMap.size()
        public int size() {
            long n = sumCount();
            return ((n < 0L) ? 0 :
                    (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                    (int)n);
        }
        // 直接将 CounterCell 中的值相加起来即可
        final long sumCount() {
            CounterCell[] as = counterCells; CounterCell a;
            long sum = baseCount;
            if (as != null) {
                for (int i = 0; i < as.length; ++i) {
                    if ((a = as[i]) != null)
                        sum += a.value;
                }
            }
            return sum;
        }

      虽然ConcurrentHash的元素本身没有使用分段式存储了,但是其计数值还是存在了多个 CounterCell 中,目的自然是为了减少多线程竞争对计数器的更新成性能瓶颈。在进行 size() 计数时,并未有上锁操作,整个 CounterCell 使用 volatile 修饰,保证其可见性,但是整个size 却是不保证绝对准确的哦。

    4. 并发容器 --ArrayBlockingQueue

      下面我们再来看看另一各类型的并发容器: ArrayBlockingQueue

        // ArrayBlockingQueue.offer()
        /**
         * Inserts the specified element at the tail of this queue if it is
         * possible to do so immediately without exceeding the queue's capacity,
         * returning {@code true} upon success and {@code false} if this queue
         * is full.  This method is generally preferable to method {@link #add},
         * which can fail to insert an element only by throwing an exception.
         *
         * @throws NullPointerException if the specified element is null
         */
        public boolean offer(E e) {
            checkNotNull(e);
            final ReentrantLock lock = this.lock;
            // 直接上锁操作
            lock.lock();
            try {
                if (count == items.length)
                    return false;
                else {
                    // 进行入队操作
                    enqueue(e);
                    return true;
                }
            } finally {
                lock.unlock();
            }
        }
        
        /**
         * Inserts element at current put position, advances, and signals.
         * Call only when holding lock.
         */
        private void enqueue(E x) {
            // assert lock.getHoldCount() == 1;
            // assert items[putIndex] == null;
            final Object[] items = this.items;
            items[putIndex] = x;
            if (++putIndex == items.length)
                putIndex = 0;
            // 同样,它还是通过一个  count 的计数器完成统计工作
            count++;
            notEmpty.signal();
        }
        // 移除动作时,也需要维护 count 的值
        /**
         * Deletes item at array index removeIndex.
         * Utility for remove(Object) and iterator.remove.
         * Call only when holding lock.
         */
        void removeAt(final int removeIndex) {
            // assert lock.getHoldCount() == 1;
            // assert items[removeIndex] != null;
            // assert removeIndex >= 0 && removeIndex < items.length;
            final Object[] items = this.items;
            if (removeIndex == takeIndex) {
                // removing front item; just advance
                items[takeIndex] = null;
                if (++takeIndex == items.length)
                    takeIndex = 0;
                // 移除成功, 将计数器减1
                count--;
                if (itrs != null)
                    itrs.elementDequeued();
            } else {
                // an "interior" remove
    
                // slide over all others up through putIndex.
                // 通过轮询的方式, 必然有一个元素被删除
                final int putIndex = this.putIndex;
                for (int i = removeIndex;;) {
                    int next = i + 1;
                    if (next == items.length)
                        next = 0;
                    if (next != putIndex) {
                        items[i] = items[next];
                        i = next;
                    } else {
                        items[i] = null;
                        this.putIndex = i;
                        break;
                    }
                // 计数器相减
                count--;
                if (itrs != null)
                    itrs.removedAt(removeIndex);
            }
            notFull.signal();
        }

      同样是维护了一个计数器,但是因为有上锁机制的保证,整个过程看起来就简单了许多。在获取元素大小时,自然也就简单了.

        // ArrayBlockingQueue.size()
        /**
         * Returns the number of elements in this queue.
         *
         * @return the number of elements in this queue
         */
        public int size() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return count;
            } finally {
                lock.unlock();
            }
        }

      但是它为了保证结果的准确性,在计数时,同样进行了上锁操作。可见,并发容器的实现思路也基本一致.并无太多奇淫技巧. 咱们再来看一下并发容器的实现: CopyOnWriteArrayList

    5. 并发容器 --CopyOnWriteArrayList

      顾名思义,是在写操作的时候,使用复制方式进行实现。

        // CopyOnWriteArrayList.add()
        /**
         * Appends the specified element to the end of this list.
         *
         * @param e element to be appended to this list
         * @return {@code true} (as specified by {@link Collection#add})
         */
        public boolean add(E e) {
            final ReentrantLock lock = this.lock;
            // 同样上锁保证线程安全
            lock.lock();
            try {
                Object[] elements = getArray();
                int len = elements.length;
                // 将元素copy出来, 但其并非维护一个len字段
                Object[] newElements = Arrays.copyOf(elements, len + 1);
                newElements[len] = e;
                setArray(newElements);
                return true;
            } finally {
                lock.unlock();
            }
        }
        // CopyOnWriteArrayList, 删除一个字段, 同其名称一样, 还是使用写时复制实现 
        public E remove(int index) {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                Object[] elements = getArray();
                int len = elements.length;
                E oldValue = get(elements, index);
                int numMoved = len - index - 1;
                if (numMoved == 0)
                    setArray(Arrays.copyOf(elements, len - 1));
                else {
                    // 找到移除的字段位置, 依次复制其前后元素到新数组中,完成功能
                    Object[] newElements = new Object[len - 1];
                    System.arraycopy(elements, 0, newElements, 0, index);
                    System.arraycopy(elements, index + 1, newElements, index,
                                     numMoved);
                    setArray(newElements);
                }
                return oldValue;
            } finally {
                lock.unlock();
            }
        }
    
        
        // CopyOnWriteArrayList.size(), 直接使用数组长度字段
        /**
         * Returns the number of elements in this list.
         *
         * @return the number of elements in this list
         */
        public int size() {
            // 获取元素大小时,直接获取所有元素,取数组的长度即可. 借用jvm提供的数组长度元信息实现
            return getArray().length;
        }
        /**
         * Gets the array.  Non-private so as to also be accessible
         * from CopyOnWriteArraySet class.
         */
        final Object[] getArray() {
            // 该array字段一定是要保证可见性的, 即至少得是  volatile 修饰的数据
            return array;
        }

      CopyOnWriteArrayList, 因为其语义决定,其在一定程度上是线程安全的,所以,在读操作时,就不需要上锁,从而性能在某些场景会比较好。

      根据功能特性的不同, CopyOnWriteArrayList 采用了一个不同实现方式, 实现了元素的统计功能. 另外像 SynchronousQueue#size, 则永久返回0, 因为它的定义是当被放一个元素后,必须等到有线程消费之后才可返回,而其本身并不存储元素. 所以, 虽然元素计数道理比较简单通用, 但是还是要按照具体的场景进行相应的实现, 才能满足具体的需求. 即不可脱离场景谈技术. 

    6. 更多计数

      类似数据库类的产品,同样的这样的计数刚性需求,各自实现方式也有不同,但大体思路也差不多。比如 redis 的计数使用在计数时临时遍历元素实现,mysql myisam 引擎使用一个表级的计数器等等。

  • 相关阅读:
    正则匹配整数或小数
    文本超出点点点
    订单页面布局
    数据库连接池 maxActive,maxIdle,maxWait参数
    dll静态调用和动态调用
    Could not open JDBC Connection for transaction; nested exception is com.alibaba.druid.pool.GetConnection
    sql server调优
    AdPlus
    010 Editor
    WinDBG相关
  • 原文地址:https://www.cnblogs.com/yougewe/p/13238124.html
Copyright © 2011-2022 走看看