zoukankan      html  css  js  c++  java
  • hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 

    题意:对于给定的n,问有多少种组成方式

    思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是dp[i][i]。那么dp[i][j]=dp[i][j-1]+dp[i-j][i-j],dp[i][j-1]是累加1到j-1的结果,dp[i-j][i-j]表示的就是最大为j,然后i-j有多少种表达方式啦。因为i-j可能大于j,这与我们定义的j为最大值矛盾,所以要去掉大于j的那些值

    /**************************************************************
        Problem:hdu 1028
        User: youmi
        Language: C++
        Result: Accepted
        Time:15MS
        Memory:1908K
    ****************************************************************/
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    //#include<bits/stdc++.h>
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <map>
    #include <stack>
    #include <set>
    #include <sstream>
    #include <cmath>
    #include <queue>
    #include <deque>
    #include <string>
    #include <vector>
    #define zeros(a) memset(a,0,sizeof(a))
    #define ones(a) memset(a,-1,sizeof(a))
    #define sc(a) scanf("%d",&a)
    #define sc2(a,b) scanf("%d%d",&a,&b)
    #define sc3(a,b,c) scanf("%d%d%d",&a,&b,&c)
    #define scs(a) scanf("%s",a)
    #define sclld(a) scanf("%I64d",&a)
    #define pt(a) printf("%d
    ",a)
    #define ptlld(a) printf("%I64d
    ",a)
    #define rep(i,from,to) for(int i=from;i<=to;i++)
    #define irep(i,to,from) for(int i=to;i>=from;i--)
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define lson (step<<1)
    #define rson (lson+1)
    #define eps 1e-6
    #define oo 0x3fffffff
    #define TEST cout<<"*************************"<<endl
    const double pi=4*atan(1.0);
    
    using namespace std;
    typedef long long ll;
    template <class T> inline void read(T &n)
    {
        char c; int flag = 1;
        for (c = getchar(); !(c >= '0' && c <= '9' || c == '-'); c = getchar()); if (c == '-') flag = -1, n = 0; else n = c - '0';
        for (c = getchar(); c >= '0' && c <= '9'; c = getchar()) n = n * 10 + c - '0'; n *= flag;
    }
    int Pow(int base, ll n, int mo)
    {
        if (n == 0) return 1;
        if (n == 1) return base % mo;
        int tmp = Pow(base, n >> 1, mo);
        tmp = (ll)tmp * tmp % mo;
        if (n & 1) tmp = (ll)tmp * base % mo;
        return tmp;
    }
    //***************************
    
    int n;
    const int maxn=200+10;
    ll dp[maxn][maxn];
    void init()
    {
        zeros(dp);
        dp[0][0]=1;
        rep(i,1,120)
        {
            rep(j,1,i)
            {
                dp[i][j]=dp[i][j-1]+dp[i-j][i-j];
                if(j<(i+1)/2)
                    dp[i][j]-=dp[i-j][i-j]-dp[i-j][j];
            }
        }
    }
    
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
        #endif
        init();
        while(~sc(n))
        {
            ptlld(dp[n][n]);
        }
    }
    不为失败找借口,只为成功找方法
  • 相关阅读:
    POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)
    LCA 最近公共祖先 (模板)
    线段树,最大值查询位置
    带权并查集
    转负二进制
    UVA 11437 Triangle Fun
    UVA 11488 Hyper Prefix Sets (字典树)
    UVALive 3295 Counting Triangles
    POJ 2752 Seek the Name, Seek the Fame (KMP)
    UVA 11584 Partitioning by Palindromes (字符串区间dp)
  • 原文地址:https://www.cnblogs.com/youmi/p/5697812.html
Copyright © 2011-2022 走看看