zoukankan      html  css  js  c++  java
  • 2014斯坦福大学-吴恩达公开课学习笔记

    资源链接:链接: https://pan.baidu.com/s/1c1MIm1E 密码: gant

    chapter2 : linear regression with one feature

    ************************************************************************************************************

    ************************************************************************************************************

    chapter4:linear regression with multiple feature

    • 在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛

       

    • 如果学习率 α 过小,则达到收敛所需的迭代次数会非常高;如果学习率 α 过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

            

    ************************************************************************************************************

    ************************************************************************************************************

    chapter 5 : Octave

    • 参考文献 
    • plot 
      x=[0:0.01:1];
      y1=sin(2*pi*x);
      plot(x,y1);
      y2=cos(2*pi*x);
      hold on;
      plot(x,y2);
      xlabel('time');
      ylabel('value');
      title('my plot');
      legend('sin','cos');
      print -dpng 'my.png';
      close;
      figure(1);plot(x,y1);
      figure(2);plot(x,y2);
      figure(3);
      subplot(1,2,1);
      plot(x,y1);
      subplot(1,2,2);
      plot(x,y2);
      axis([0.5 1 -1 1]); %change the axis of x and y
      clf;
      a=magic(5)
      imagesc(a);
      imagesc(a), colorbar,colormap gray;
      View Code

    *************************************************************************************************************

    *************************************************************************************************************

    chapter 6 : logistic regression and regularization

     

    ************************************************************************************************************

    ************************************************************************************************************

    chapter 7 : regularization

    ************************************************************************************************************

    ************************************************************************************************************

    chapter 8 : neural network

    • cost function

            

    • forward propagation

          

    • backward propagation

                    

    • 数学证明
    • numerical estimation of gradient
    • random initialization and the step of training a neural network

    ********************************************************************************************************

    ********************************************************************************************************

    chapter 10 : Deciding what to try next

    • evaluating a hypothesis with cross validation
    •  Diagnosing bias and variance

    • learning curves and decide what to do next
    • 高手学习笔记

    **********************************************************************************************************

    **********************************************************************************************************

    chapter 11 : precision and recall 

    • skewed data vs precision and recall

    *********************************************************************************************************

    *********************************************************************************************************

    chapter 12 : SVM 

    • for enlagering the projection of X, then we get large margin 
    • kernel and  do perform feature scalling before using the Gaussian kernel
    • Kernel need to satisfy technical condition called "Mercer's Theorem"  to make sure SVM packages' optimizations run correctly, and do not diverge.

    • Polynomial kernel: (XTL+constant)degree

    • SVM  has a convex optimization problem

    •  大牛学习博客

    *********************************************************************************************************

    *********************************************************************************************************

    chapter 13 : Unsupervised learning and clustering

    *********************************************************************************************************

    *********************************************************************************************************

    chapter 14 : PCA

    •   first perform mean normalization and feature scalling so that the feature should have zero mean and comparabel ranges of values.
    • Data preprocessing
    • PCA and SVD , the implementation of PCA , the choosing of K

    • getting the PCA parameter only on the training set and use them on the test and cross validation set

    chapter 15 :

    不为失败找借口,只为成功找方法
  • 相关阅读:
    day50_BOS项目_02
    day51_BOS项目_03
    Criteria 和 DetachedCriteria 的区别
    ecplise中如何关闭Tomcat的自动重启/加载
    Tomcat的Start可以启动起来,但是Debug启动突然启动不起来,一直停在 Class<T>.getDeclaredConstructors0(boolean) line: not available [native method] 的解决办法
    windows下读取Linux分区软件
    15 条实用 Linux/Unix 磁带管理命令
    Nginx安装与配置文件解析
    专注docker安全:Security Scanning
    清除linux系统的多余引导
  • 原文地址:https://www.cnblogs.com/youmi/p/7473542.html
Copyright © 2011-2022 走看看