zoukankan      html  css  js  c++  java
  • POJ Minimum Cut

    Minimum Cut
    Time Limit: 10000MS   Memory Limit: 65536K
    Total Submissions: 9302   Accepted: 3902
    Case Time Limit: 5000MS

    Description

    Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs?

    Input

    Input contains multiple test cases. Each test case starts with two integers N and M (2 ≤ N ≤ 500, 0 ≤ M ≤ N × (N − 1) ⁄ 2) in one line, where N is the number of vertices. Following are M lines, each line contains Mintegers AB and C (0 ≤ AB < NA ≠ BC > 0), meaning that there C edges connecting vertices A and B.

    Output

    There is only one line for each test case, which contains the size of the minimum cut of the graph. If the graph is disconnected, print 0.

    Sample Input

    3 3
    0 1 1
    1 2 1
    2 0 1
    4 3
    0 1 1
    1 2 1
    2 3 1
    8 14
    0 1 1
    0 2 1
    0 3 1
    1 2 1
    1 3 1
    2 3 1
    4 5 1
    4 6 1
    4 7 1
    5 6 1
    5 7 1
    6 7 1
    4 0 1
    7 3 1

    Sample Output

    2
    1
    2

    Source

    Baidu Star 2006 Semifinal 
    Wang, Ying (Originator) 
    Chen, Shixi (Test cases)

    [Submit]   [Go Back]   [Status]   [Discuss]

    无向图的边连通度,有一个神奇的算法,还有我蒟蒻的模板。

     1 #include <cstdio>
     2 #include <cstring>
     3 
     4 inline int min(int a, int b)
     5 {
     6     return a < b ? a : b;
     7 }
     8 
     9 const int inf = 2e9;
    10 const int maxn = 505;
    11 
    12 int n, m;
    13 int vis[maxn];
    14 int wet[maxn];
    15 int com[maxn];
    16 int G[maxn][maxn];
    17 
    18 inline int search(int &S, int &T)
    19 {
    20     memset(vis, 0, sizeof(vis));
    21     memset(wet, 0, sizeof(wet));
    22     
    23     S = -1, T = -1;
    24     
    25     int id, maxi, ret = 0;
    26     
    27     for (int i = 0; i < n; ++i)
    28     {
    29         maxi = -inf;
    30         
    31         for (int j = 0; j < n; ++j)
    32             if (!com[j] && !vis[j] && wet[j] > maxi)
    33                 id = j, maxi = wet[j];
    34                 
    35         if (id == T)
    36             return ret;
    37 
    38         S = T;
    39         T = id;
    40         ret = maxi;
    41         vis[id] = 1;
    42         
    43         for (int j = 0; j < n; ++j)
    44             if (!com[j] && !vis[j])
    45                 wet[j] += G[id][j];
    46     }
    47 }
    48 
    49 inline int StoerWagner(void)
    50 {
    51     int ret = inf, S, T;
    52     
    53     memset(com, 0, sizeof(com));
    54     
    55     for (int i = 0; i < n - 1; ++i)
    56     {
    57         ret = min(ret, search(S, T));
    58         
    59         if (!ret)return 0;
    60         
    61         com[T] = 1;
    62         
    63         for (int j = 0; j < n; ++j)
    64             if (!com[j])
    65                 G[S][j] += G[T][j],
    66                 G[j][S] += G[j][T];
    67     }
    68     
    69     return ret;
    70 }
    71 
    72 signed main(void)
    73 {
    74     while (~scanf("%d%d", &n, &m))
    75     {
    76         memset(G, 0, sizeof(G));
    77         
    78         for (int i = 1; i <= m; ++i)
    79         {
    80             int x, y, w;
    81             scanf("%d%d%d", &x, &y, &w);
    82             G[x][y] += w;
    83             G[y][x] += w;
    84         }
    85         
    86         printf("%d
    ", StoerWagner());
    87     }
    88 }

    @Author: YouSiki

  • 相关阅读:
    【HDOJ6687】Rikka with Stable Marriage(Trie树,贪心)
    【CF1244D】Paint the Tree(树形DP,树)
    【HDOJ6681】Rikka with Cake(扫描线,线段树)
    CPU亲和力
    iostat、vmstat和mpstat命令
    sar命令介绍
    Linux网络调试工具
    svn使用入门
    深入探究C/C++基本数据类型
    core文件与gdb调试
  • 原文地址:https://www.cnblogs.com/yousiki/p/6230556.html
Copyright © 2011-2022 走看看