zoukankan      html  css  js  c++  java
  • POJ 3469 Dual Core CPU Dual Core CPU

    Time Limit: 15000MS   Memory Limit: 131072K
    Total Submissions: 23780   Accepted: 10338
    Case Time Limit: 5000MS

    Description

    As more and more computers are equipped with dual core CPU, SetagLilb, the Chief Technology Officer of TinySoft Corporation, decided to update their famous product - SWODNIW.

    The routine consists of N modules, and each of them should run in a certain core. The costs for all the routines to execute on two cores has been estimated. Let's define them as Ai and Bi. Meanwhile, M pairs of modules need to do some data-exchange. If they are running on the same core, then the cost of this action can be ignored. Otherwise, some extra cost are needed. You should arrange wisely to minimize the total cost.

    Input

    There are two integers in the first line of input data, N and M (1 ≤ N ≤ 20000, 1 ≤ M ≤ 200000) .
    The next N lines, each contains two integer, Ai and Bi.
    In the following M lines, each contains three integers: abw. The meaning is that if module a and module b don't execute on the same core, you should pay extra w dollars for the data-exchange between them.

    Output

    Output only one integer, the minimum total cost.

    Sample Input

    3 1
    1 10
    2 10
    10 3
    2 3 1000
    

    Sample Output

    13

    Source

    [Submit]   [Go Back]   [Status]   [Discuss]

    解法:最小割。
    源点S向每个任务连边,容量Ai。
    每个任务向汇点T连边,容量Bi。
    对于二元组关系(x,y),在x,y之间连双向边,容量C。
    最小割就是最优的方案。
    每个任务与S割开表示在A上完成,与T割开表示在B上完成。
    ——Lydrainbowcat
     
      1 #include <cstdio>
      2 #include <cstring>
      3 
      4 inline char nextChar(void)
      5 {
      6     static const int siz = 1 << 20;
      7     
      8     static char buf[siz];
      9     static char *hd = buf + siz;
     10     static char *tl = buf + siz;
     11     
     12     if (hd == tl)
     13         fread(hd = buf, 1, siz, stdin);
     14     
     15     return *hd++;
     16 }
     17 
     18 inline int nextInt(void)
     19 {
     20     register int ret = 0;
     21     register bool neg = false;
     22     register char bit = nextChar();
     23     
     24     for (; bit < 48; bit = nextChar())
     25         if (bit == '-')neg ^= true;
     26     
     27     for (; bit > 47; bit = nextChar())
     28         ret = ret * 10 + bit - '0';
     29     
     30     return neg ? -ret : ret;
     31 }
     32 
     33 const int inf = 2e9;
     34 
     35 const int maxn = 200005;
     36 const int maxm = 5000005;
     37 
     38 int n, m;
     39 int s, t;
     40 int hd[maxn];
     41 int to[maxm];
     42 int nt[maxm];
     43 int fl[maxm];
     44 
     45 inline void addEdge(int u, int v, int f)
     46 {
     47     static int tot = 0;
     48     static bool init = true;
     49     
     50     if (init)
     51         memset(hd, -1, sizeof(hd)), init = false;
     52     
     53     nt[tot] = hd[u]; to[tot] = v; fl[tot] = f; hd[u] = tot++;
     54     nt[tot] = hd[v]; to[tot] = u; fl[tot] = 0; hd[v] = tot++;
     55 }
     56 
     57 int dep[maxn];
     58 
     59 inline bool bfs(void)
     60 {
     61     static int que[maxn];
     62     static int head, tail;
     63     
     64     memset(dep, 0, sizeof(dep));
     65     que[head = 0] = s, dep[s] = tail = 1;
     66     
     67     while (head != tail)
     68     {
     69         int u = que[head++], v;
     70         
     71         for (int i = hd[u]; ~i; i = nt[i])
     72             if (fl[i] && !dep[v = to[i]])
     73                 dep[que[tail++] = v] = dep[u] + 1;
     74     }
     75     
     76     return dep[t];
     77 }
     78 
     79 int cur[maxn];
     80 
     81 inline int min(int a, int b)
     82 {
     83     return a < b ? a : b;
     84 }
     85 
     86 int dfs(int u, int f)
     87 {
     88     if (!f || u == t)
     89         return f;
     90     
     91     int used = 0, flow, v;
     92     
     93     for (int i = cur[u]; ~i; i = nt[i])
     94         if (fl[i] && dep[v = to[i]] == dep[u] + 1)
     95         {
     96             flow = dfs(v, min(fl[i], f - used));
     97             
     98             used += flow;
     99             fl[i] -= flow;
    100             fl[i^1] += flow;
    101             
    102             if (fl[i])
    103                 cur[u] = i;
    104             
    105             if (used == f)
    106                 return f;
    107         }
    108     
    109     if (!used)
    110         dep[u] = 0;
    111     
    112     return used;
    113 }
    114 
    115 inline int maxFlow(void)
    116 {
    117     int maxFlow = 0, newFlow;
    118     
    119     while (bfs())
    120     {
    121         memcpy(cur, hd, sizeof(hd));
    122         
    123         while (newFlow = dfs(s, inf))
    124             maxFlow += newFlow;
    125     }
    126     
    127     return maxFlow;
    128 }
    129 
    130 signed main(void)
    131 {
    132     n = nextInt();
    133     m = nextInt();
    134     
    135     s = 0, t = n + 1;
    136     
    137     for (int i = 1; i <= n; ++i)
    138     {
    139         int ai = nextInt();
    140         int bi = nextInt();
    141         
    142         addEdge(s, i, ai);
    143         addEdge(i, t, bi);
    144     }
    145     
    146     for (int i = 1; i <= m; ++i)
    147     {
    148         int x = nextInt();
    149         int y = nextInt();
    150         int w = nextInt();
    151         
    152         addEdge(x, y, w);
    153         addEdge(y, x, w);
    154     }
    155     
    156     printf("%d
    ", maxFlow());
    157 }

    @Author: YouSiki

     
  • 相关阅读:
    梯度下降法
    超平面
    感知机模型
    三角不等式
    统计学习方法基本概念
    Kaggle 的注册和使用
    win10 部署 Anaconda
    全概率和贝叶斯公式
    行列式
    伴随矩阵
  • 原文地址:https://www.cnblogs.com/yousiki/p/6340149.html
Copyright © 2011-2022 走看看