zoukankan      html  css  js  c++  java
  • 《how to design programs》15章 相互引用的数据定义

    由结构体组成的表与结构体中的表。

    在用追溯形式建立家家谱树时,我们通常从某个后代除法,依次处理它的父母,组父母等。而构建树时,我们会不断添加谁是谁的孩子,而不是写出谁是谁的父母,从而建立一颗后代家谱树。

     绘制后代数与绘制祖先树一样,只是将所有箭头的方向都反了过来:

    (define-struct parent (children name date eyes))
    children数量不固定,怎么办?
    自然的选择是另children代表由parent结构体组成的表,这个表代表孩子,
    parent是结构体:
    (make-parent loc n d e) loc是孩子的表。
    不幸的是,这个数据定义违反了我们关于定义的标准,具体说,他提到了一个还没定义的集合:孩子的表。
    既然无法在不知道孩子的表示什么的情况下定义父母类型,我们就先定义孩子的表:
    list of childrens 是下列之一
    1 empty
    2 (cons p loc);其中p是parent,loc是孩子的表。
    第二个定义时标准的,但是他遇到和parent一样的问题。
    结论是,这2个定义在相互引用对方,他们只在同时定义的情况下才有意义:
    hen two (or more) data definitions refer to each other, they are said to be MUTUALLY RECURSIVE or MUTUALLY REFERENTIAL.

    如果2个或更多的数据定义相互引用,我们就称他们为相互引用的。
    现在,我们可以把上图中的家谱树转成scheme表达式了,当然,在建立parent结构体之前,必须先定义所偶有表示其孩子的阶段,最好的方法是,在使用某个parent结构体之前先给他命名,如:
    (define Gustav (make-parent empty 'Gustav 1988 'brown))
    
    (make-parent (list Gustav) 'Fred 1950 'yellow)
    

    To create a parent structure for Fred, we first define one for Gustav so that we can form (list Gustav), the list of children for Fred.

    完整定义:

    ;; Youngest Generation:
    (define Gustav (make-parent empty 'Gustav 1988 'brown))
    
    (define Fred&Eva (list Gustav))
    
    ;; Middle Generation:
    (define Adam (make-parent empty 'Adam 1950 'yellow))
    (define Dave (make-parent empty 'Dave 1955 'black))
    (define Eva (make-parent Fred&Eva 'Eva 1965 'blue))
    (define Fred (make-parent Fred&Eva 'Fred 1966 'pink))
    
    (define Carl&Bettina (list Adam Dave Eva))
    
    ;; Oldest Generation:
    (define Carl (make-parent Carl&Bettina 'Carl 1926 'green))
    (define Bettina (make-parent Carl&Bettina 'Bettina 1926 'green))
    Figure 41:  A Scheme representation of the descendant family tree

    现在我们来研究blue-eyed-descendent?的开发,他是blue-eyed-ancestor的自然对应物,该函数读入一个parent结构体,判断他或货代是否有眼睛是蓝色的。下面的有点难,我最开始试图只用一个函数来搞定,发现始终不行,看了答案才知道:

    ;; blue-eyed-descendant? : parent  ->  boolean
    ;; to determine whether a-parent any of the descendants (children, 
    ;; grandchildren, and so on) have 'blue in the eyes field
    (define (blue-eyed-descendant? a-parent)
      (cond
        [(symbol=? (parent-eyes a-parent) 'blue) true]
        [else (blue-eyed-children? (parent-children a-parent))]))
    
    ;; blue-eyed-children? : list-of-children  ->  boolean
    ;; to determine whether any of the structures in aloc is blue-eyed
    ;; or has any blue-eyed descendant
    (define (blue-eyed-children? aloc)
      (cond
        [(empty? aloc) false]
        [else
          (cond
            [(blue-eyed-descendant? (first aloc)) true]
            [else (blue-eyed-children? (rest aloc))])]))
    ;; blue-eyed-descendant? : parent  ->  boolean
    ;; to determine whether a-parent any of the descendants (children, 
    ;; grandchildren, and so on) have 'blue in the eyes field
    (define (blue-eyed-descendant? a-parent)
      (or (symbol=? (parent-eyes a-parent) 'blue)
          (blue-eyed-children? (parent-children a-parent))))
    
    ;; blue-eyed-children? : list-of-children  ->  boolean
    ;; to determine whether any of the structures in aloc is blue-eyed
    ;; or has any blue-eyed descendant
    (define (blue-eyed-children? aloc)
      (cond
        [(empty? aloc) false]
        [else (or (blue-eyed-descendant? (first aloc))
                  (blue-eyed-children? (rest aloc)))]))
    Figure 42:  Two programs for finding a blue-eyed descendant

     Exercise 15.1.2.   Develop the function how-far-removed. It determines how far a blue-eyed descendant, if one exists, is removed from the given parent. If the given parent has blue eyes, the distance is 0; if eyes is not blue but at least one its children's eyes are, the distance is 1; and so on. If no descendant of the given parent has blue eyes, the function returns false when it is applied to the corresponding family tree.    Solution

    ;; A parent is a structure: (make-parent loc n d e) 
    ;; where loc is a list of children, 
    ;; n and e are symbols, and d is a number. 
    (define-struct parent (children name date eyes))
    
    ;; A list of children is either 
    ;;   1.  empty or 
    ;;   2.  (cons p loc) where p is a parent and loc is a list of children. 
    
    ;; EXAMPLES OF DATA
    (define robby (make-parent empty "Robby" 1972 'blue))
    (define ted (make-parent empty "Ted" 1975 'brown))
    (define pat (make-parent empty "Pat" 1978 'brown))
    (define pete (make-parent empty "Pete" 1982 'brown))
    (define alice (make-parent (list robby ted pat pete) "Alice" 1949 'blue))
    (define bill (make-parent (list robby ted pat pete) "Bill" 1949 'brown))
    (define lolly (make-parent empty "Lolly" 1951 'blue))
    (define tutu (make-parent (list alice lolly) "Tutu" 1911 'brown))
    
    ;; how-far-removed : parent -> number or false
    ;; to find the distance to the nearest blue eyed descendent
    ;; or return false if there is no such descendant
    (define (how-far-removed a-parent)
      (cond
        [(symbol=? 'blue (parent-eyes a-parent))
         0]
        [else
         (add1/false
          (how-far-removed-children
           (parent-children a-parent)))]))
        
    ;; how-far-removed-children : list of children -> number or false
    ;; to find the nearest blue eyed descent for a list of children,
    ;; assuming that one exists
    (define (how-far-removed-children children)
      (cond
        [(empty? children) false]
        [else (min/false (how-far-removed (first children))
                         (how-far-removed-children (rest children)))]))
    
    ;; add1/false : number or false -> number or false
    ;; to add one to a number, or return false
    (define (add1/false n)
      (cond
        [(number? n) (+ n 1)]
        [else false]))
    
    ;; min/false : (number or false) (number or false) -> (number or false)
    ;; to compute the minimum number of two numbers
    ;; if both are numbers, find the minimum.
    ;; if only one is a number, return that.
    ;; if both are false, return false.
    (define (min/false n m)
      (cond
        [(and (number? n) (number? m)) (min n m)]
        [(and (number? n) (boolean? m)) n]
        [(and (boolean? n) (number? m)) m]
        [(and (boolean? n) (boolean? m)) false]))
    
    ;; EXAMPLES AS TESTS
    (how-far-removed ted) "should be" false
    (how-far-removed robby) "should be" 0
    (how-far-removed alice) "should be" 0
    (how-far-removed bill) "should be" 1
    (how-far-removed tutu) "should be" 1

    Exercise 15.1.3.   Develop the function count-descendants, which consumes a parent and produces the number of descendants, including the parent.

    Develop the function count-proper-descendants, which consumes a parent and produces the number of proper descendants, that is, all nodes in the family tree, not counting the parent.    Solution

    (define (count-descendants a-parent)
      (cond
        [(empty? (parent-children a-parent)) 1]
        [else (+ 1 (count-children (parent-children a-parent)))]
        )
      )
     
    ;; count-children : list-of-children -> number
    ;; consumes a list-of-children c
    ;; produces the number of parents in c
    (define (count-children a-loc)
      (cond
        [(empty? a-loc) 0]
        [else (+ (count-descendants (first a-loc)) 
                 (count-children (rest a-loc)))]))
     
     
    (count-descendants Eva) 2
    (count-descendants Carl) 5
    (define (count-proper-descendants a-parent) 
      (count-children (parent-children a-parent))
      )
     

    Exercise 15.1.4.   Develop the function eye-colors, which consumes a parent and produces a list of all eye colors in the tree. An eye color may occur more than once in the list.

    Hint: Use the Scheme operation append, which consumes two lists and produces the concatenation of the two lists.    Solution

    ;; eye-colors : parent -> list
    ;; consumes a parent and produces a list of all eye colors in the tree
    (define (eye-colors a-parent)
      (cons (parent-eyes a-parent) (children-eyes (parent-children a-parent)))
      )
    
                                 
    (define (children-eyes a-loc)
      (cond 
        [(empty? a-loc) empty]
        [else (append (eye-colors (first a-loc))
                      (children-eyes (rest a-loc))
                      )
              ]
        )
      )
    (eye-colors Carl)

    相互递归

    为相互引用的定义设计函数:
    在上述例子中,我们需要2个相关的定义:

    Templates:The templates are created in parallel, following the advice concerning compound data, mixed data, and self-referential data. Finally, we must determine for each selector expression in each template whether it corresponds to a cross-reference to some definition. If so, we annotate it in the same way we annotate cross-references.

    Here are the templates for our running example:

    模板被并行地创建。

    fun-parent模板中没有条件,因为parent的数据定义中并不包含任何子句,而是包含对第二个模板的相互引用:处理parent结构体中的chidlren字段。按照同样的规则,fun-children是一个条件式,第2个cond子句中包含了一处自引用,处理表的rest部分,以及对表的first元素,即parent结构体-的一处相互引用。

      对数据定义和模板的比较表明了他们是多么的类似

    15.3 网页再谈

  • 相关阅读:
    git命令记录
    JS实现iframe自适应高度
    js生成某个范围内的随机数
    jquery实现按钮翻转动画
    删除ELK的索引
    ELK故障处理,不知道成功否
    软件开发的SOLID原则
    阿里云的远程桌面问题
    Zabbix增加邮箱后Server宕处理
    201811招投标培训要点
  • 原文地址:https://www.cnblogs.com/youxin/p/3600584.html
Copyright © 2011-2022 走看看