zoukankan      html  css  js  c++  java
  • pkg-config用法和gcc cflags

    pkg-config程序是干什么用的?简单的说就是向用户向程序提供相应库的路径、版本号等信息的程序。
    譬如说我们运行以下命令:
    pkg-config  查看gcc的CFLAGS参数
    $pkg-config --libs --cflags opencv
    会显示如下信息:
    -I/usr/include/opencv -lcxcore -lcv -lhighgui -lcvaux
     

    root@i :# pkg-config --libs --cflags libevent
    -I/usr/local/include -L/usr/local/lib -levent

    各位看官,你看这不就是我们用gcc编译连接时CFLAGS的参数吗?
    因此当我们需要编译连接某个库时,我们只需要把上面那行加入gcc 的参数里面即可。
    这也是configure的作用,它会检查你需要的包,产生相应的信息。
    那pkg-config从哪儿知道这些信息的呢?它是从包名为xxx.pc这个文件中查找到的。拿上面那个例子说,它是从opencv.pc这个文件中查知的。
    pkg-config 又怎么会知道opencv.pc这个文件呢?
    下面我们看一下pkg-config是怎样工作的。
    缺省情况下,pkg-config首 先在prefix/lib/pkgconfig/中查找相关包(譬如opencv)对应的相应的文件(opencv.pc)。在linux上上述路径名为 /usr/lib/pkconfig/。若是没有找到,它也会到PKG_CONFIG_PATH这个环境变量所指定的路径下去找。若是没有找到,它就会报 错,例如:
    Package opencv was not found in the pkg-config search path.
    Perhaps you should add the directory containing `opencv.pc'
    to the PKG_CONFIG_PATH environment variable
    No package 'opencv' found

    设置环境变量PKG_CONFIG_PATH方法举例如下:
    export PKG_CONFIG_PATH=/cv/lib:$PKG_CONFIG_PATH

    ================================================================
    查看一个.pc文件的内容:
    [root@yx pkgconfig]# cat glib-2.0.pc 
    prefix=/usr
    exec_prefix=/usr
    libdir=/lib
    includedir=/usr/include
    configexecincludedir=/usr/lib/glib-2.0/include

    glib_genmarshal=glib-genmarshal
    gobject_query=gobject-query
    glib_mkenums=glib-mkenums

    Name: GLib
    Description: C Utility Library
    Version: 2.12.3
    Libs: -L${libdir} -lglib-2.0  
    Cflags: -I${includedir}/glib-2.0 -I${configexecincludedir}

    [root@yx pkgconfig]# pwd
    /usr/lib/pkgconfig

    可见.pc文件 是对其的库文件路径,头文件路径,版本号,Cflags等一些参数进行封装。
    ---------------------
     pkg-config能根据软件安装时软件的.pc配置文件路径找到相应的头文件路径和库文件路径,如我的ubuntu12.04下默认安装glib-2.0后在 /usr/lib/i386-linux-gnu/pkgconfig/
    root@iZ23onhpqvwZ:/usr/lib/i386-linux-gnu/pkgconfig# cat glib-2.0.pc 
    prefix=/usr
    exec_prefix=${prefix}
    libdir=${prefix}/lib/i386-linux-gnu
    includedir=${prefix}/include
    
    glib_genmarshal=glib-genmarshal
    gobject_query=gobject-query
    glib_mkenums=glib-mkenums
    
    Name: GLib
    Description: C Utility Library
    Version: 2.40.2
    Requires.private: libpcre
    Libs: -L${libdir} -lglib-2.0 
    Libs.private: -pthread  -lpcre    
    Cflags: -I${includedir}/glib-2.0 -I${libdir}/glib-2.0/include 

    再来看看第一个Gtk+程序里的 `pkg-config   --cflags   --libs  gtk+-2.0`意思: 
    `pkg-config   --cflags   --libs  gtk+-2.0` 是pkg-config从路径/usr/lib/pkgconfig
    /gtk+-2.0.pc中提取出来的用于编译用的。
    [root@yx pkgconfig]# cat  gtk+-2.0.pc 
    prefix=/usr
    exec_prefix=/usr
    libdir=/usr/lib
    includedir=/usr/include
    target=x11

    gtk_binary_version=2.10.0
    gtk_host=i686-redhat-linux-gnu

    Name: GTK+
    Description: GIMP Tool Kit (${target} target)
    Version: 2.10.4
    Requires: gdk-${target}-2.0 atk cairo
    Libs: -L${libdir} -lgtk-${target}-2.0 
    Cflags: -I${includedir}/gtk-2.0 

    显然,出可以自己来指定为:-L/usr/lib  -lgtk-{target}-2.0  -I/usr/include/gtk-2.0
    下面来看一下{target}该是多少:

    [root@yx lib]# ls gt
    gthumb/        gtk-2.0/       gtkhtml/       
    gtk/           gtk-sharp-2.0/ gtkmm-2.4/     

    [root@yx lib]# ls gtk-2.0/
    2.10.0  2.4.0  immodules  include  modules

    [root@yx lib]# ls gtk-sharp-2.0/
    gconfsharp-schemagen.exe

    [root@yx lib]# pwd
    /usr/lib
    所以认为-lgtk-{target}-2.0中的{target}该是空字符:  
    -lgtk-{target}-2.0====>-lgtk--2.0

    At Last So:(理论大致上:)
    -L/usr/lib  -lgtk-{target}-2.0  -I/usr/include/gtk-2.0  ====>
    -L/usr/lib  -lgtk--2.0  -I/usr/include/gtk-2.0
    而实际上更多些:
    对比pkg-config对gtk+-2.0看实际效果:
    [yuxu@yx base]$ pkg-config  --cflags  --libs  gtk+-2.0
    -I/usr/include/gtk-2.0  -I/usr/lib/gtk-2.0/include -I/usr/include/atk-1.0 -I/usr/include/cairo -I/usr/include/pango-1.0 -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -I/usr/include/freetype2 -I/usr/include/libpng12  -L/lib -lgtk-x11-2.0 -lgdk-x11-2.0 -latk-1.0 -lgdk_pixbuf-2.0 -lm -lpangocairo-1.0 -lpango-1.0 -lcairo -lgobject-2.0 -lgmodule-2.0 -ldl -lglib-2.0  
    后面还有很多的路径哦。



    gtk_base.c:
    #include <gtk/gtk.h>
    int main(int argc,char *argv[])
    {
        GtkWidget  *window;
        gtk_init(&argc,&argv);
        window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
        gtk_widget_show(window);
        gtk_main();
        return FALSE;
    }

    gcc   -o     gtk_base      gtk_base.c    `pkg-config   --cflags   --libs  gtk+-2.0`

     ----------------------------------------------------

    CFLAGS = -g -O2  -Wall -Werror -Wno-unused
     
    编译出现警告性错误unused-but-set-variable,变量定义但没有使用,解决方法:
     增加CFLAGS 或CPPFLAGS参数如下:
      CPPFLAGS=" -Werror -Wno-unused-but-set-variable" || exit 1
     

                                              Gcc总体选项列表

    后 缀 名

    所对应的语言

    -S

    只是编译不汇编,生成汇编代码

    -E

    只进行预编译,不做其他处理

    -g

    在可执行程序中包含标准调试信息

    -o file

    把输出文件输出到file里

    -v

    打印出编译器内部编译各过程的命令行信息和编译器的版本

    -I dir

    在头文件的搜索路径列表中添加dir目录

    -L dir

    在库文件的搜索路径列表中添加dir目录

    -static

    链接静态库

    -llibrary

    连接名为library的库文件

       

    · “-I dir”

    正如上表中所述,“-I dir”选项可以在头文件的搜索路径列表中添加dir目录。由于Linux中头文件都默认放到了“/usr/include/”目录下,因此,当用户希望添加放置在其他位置的头文件时,就可以通过“-I dir”选项来指定,这样,Gcc就会到相应的位置查找对应的目录。

    比如在“/root/workplace/Gcc”下有两个文件:

    #include<my.h>

    int main()

    {

         printf(“Hello!! ”);

         return 0;

    }

    #include<stdio.h>

    这样,就可在Gcc命令行中加入“-I”选项:

    [root@localhost Gcc] Gcc hello1.c –I /root/workplace/Gcc/ -o hello1

    这样,Gcc就能够执行出正确结果。

    小知识

    在include语句中,“<>”表示在标准路径中搜索头文件,““””表示在本目录中搜索。故在上例中,可把hello1.c的“#include<my.h>”改为“#include “my.h””,就不需要加上“-I”选项了。

    · “-L dir”

    选项“-L dir”的功能与“-I dir”类似,能够在库文件的搜索路径列表中添加dir目录。例如有程序hello_sq.c需要用到目录“/root/workplace/Gcc/lib”下的一个动态库libsunq.so,则只需键入如下命令即可:

    [root@localhost Gcc] Gcc hello_sq.c –L /root/workplace/Gcc/lib –lsunq –o hello_sq

    需要注意的是,“-I dir”和“-L dir”都只是指定了路径,而没有指定文件,因此不能在路径中包含文件名。

    另外值得详细解释一下的是“-l”选项,它指示Gcc去连接库文件libsunq.so。由于在Linux下的库文件命名时有一个规定:必须以lib三个字母开头。因此在用-l选项指定链接的库文件名时可以省去lib三个字母。也就是说Gcc在对”-lsunq”进行处理时,会自动去链接名为libsunq.so的文件。

    (2)告警和出错选项

    Gcc的告警和出错选项如表3.8所示。

                                                            Gcc总体选项列表

    选 项

    含 义

    -ansi 支持符合ANSI标准的C程序
    -pedantic 允许发出ANSI C标准所列的全部警告信息
    -pedantic-error 允许发出ANSI C标准所列的全部错误信息
    -w 关闭所有告警
    -Wall 允许发出Gcc提供的所有有用的报警信息
    -werror 把所有的告警信息转化为错误信息,并在告警发生时终止编译过程

    下面结合实例对这几个告警和出错选项进行简单的讲解。

    如有以下程序段:

    #include<stdio.h>

    void main()

    {

         long long tmp = 1;

         printf(“This is a bad code! ”);

         return 0;

    }

    这是一个很糟糕的程序,读者可以考虑一下有哪些问题?

    · “-ansi”

    该选项强制Gcc生成标准语法所要求的告警信息,尽管这还并不能保证所有没有警告的程序都是符合ANSI C标准的。运行结果如下所示:

    [root@localhost Gcc]# Gcc –ansi warning.c –o warning

    warning.c: 在函数“main”中:

    warning.c:7 警告:在无返回值的函数中,“return”带返回值

    warning.c:4 警告:“main”的返回类型不是“int”

    可以看出,该选项并没有发现”long long”这个无效数据类型的错误。

    · “-pedantic”

    允许发出ANSI C标准所列的全部警告信息,同样也保证所有没有警告的程序都是符合ANSI C标准的。其运行结果如下所示:

    [root@localhost Gcc]# Gcc –pedantic warning.c –o warning

    warning.c: 在函数“main”中:

    warning.c:5 警告:ISO C90不支持“long long”

    warning.c:7 警告:在无返回值的函数中,“return”带返回值

    warning.c:4 警告:“main”的返回类型不是“int”

    可以看出,使用该选项查看出了”long long”这个无效数据类型的错误。

    · “-Wall”

    允许发出Gcc能够提供的所有有用的报警信息。该选项的运行结果如下所示:

    [root@localhost Gcc]# Gcc –Wall warning.c –o warning

    warning.c:4 警告:“main”的返回类型不是“int”

    warning.c: 在函数”main”中:

    warning.c:7 警告:在无返回值的函数中,”return”带返回值

    warning.c:5 警告:未使用的变量“tmp”

    使用“-Wall”选项找出了未使用的变量tmp,但它并没有找出无效数据类型的错误。

    另外,Gcc还可以利用选项对单独的常见错误分别指定警告,有关具体选项的含义感兴趣的读者可以查看Gcc手册进行学习。

    (3)优化选项

    Gcc可以对代码进行优化,它通过编译选项“-On”来控制优化代码的生成,其中n是一个代表优化级别的整数。对于不同版本的Gcc来讲,n的取值范围及其对应的优化效果可能并不完全相同,比较典型的范围是从0变化到2或3。

    不同的优化级别对应不同的优化处理工作。如使用优化选项“-O”主要进行线程跳转(Thread Jump)和延迟退栈(Deferred Stack Pops)两种优化。使用优化选项“-O2”除了完成所有“-O1”级别的优化之外,同时还要进行一些额外的调整工作,如处理器指令调度等。选项“-O3”则还包括循环展开和其他一些与处理器特性相关的优化工作。

    虽然优化选项可以加速代码的运行速度,但对于调试而言将是一个很大的挑战。因为代码在经过优化之后,原先在源程序中声明和使用的变量很可能不再使用,控制流也可能会突然跳转到意外的地方,循环语句也有可能因为循环展开而变得到处都有,所有这些对调试来讲都将是一场噩梦。所以笔者建议在调试的时候最好不使用任何优化选项,只有当程序在最终发行的时候才考虑对其进行优化。

    (4)体系结构相关选项

    Gcc的体系结构相关选项如表3.9所示。

                                                        Gcc体系结构相关选项列表

    选 项

    含 义

    -mcpu=type 针对不同的CPU使用相应的CPU指令。可选择的type有i386、i486、pentium及i686等
    -mieee-fp 使用IEEE标准进行浮点数的比较
    -mno-ieee-fp 不使用IEEE标准进行浮点数的比较
    -msoft-float 输出包含浮点库调用的目标代码
    -mshort 把int类型作为16位处理,相当于short int
    -mrtd

    强行将函数参数个数固定的函数用ret NUM返回,节省调用函数的一条指令

     
  • 相关阅读:
    性能优化与使用Block实现数据回传(3)
    封装思想和抽取(2)
    磁盘缓存的计算与清理(1)
    滑动返回的延伸(全局滑动返回功能)
    滑动返回功能被覆盖的解决思路
    OC之类与对象
    OC之OC与C的比较
    OC之知识储备篇
    C语言之总结3
    C语言总结2
  • 原文地址:https://www.cnblogs.com/youxin/p/4271978.html
Copyright © 2011-2022 走看看