zoukankan      html  css  js  c++  java
  • poj 2739(筛法求素数)

      Sum of Consecutive Prime Numbers
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 21613   Accepted: 11837

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2

    Source

    Japan 2005
     
    心得:第一个循环a写成了n;T半天;选择循环时优先选择短的那条;
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<cmath>
     7 #include<vector>
     8 #include<queue>
     9 #include<stack>
    10 using namespace std;
    11 #define N 10000
    12 int n,m,pr[N],a=0;
    13 bool p[N];
    14 void gcd(){
    15     for(int i=2;i<N;i++){
    16         if(!p[i]){ pr[a++]=i;}
    17         for(int j=i*i;j<N;j+=i)
    18             p[j]=true;
    19     }
    20 }
    21 
    22 int main(){
    23    //freopen("in.txt","r",stdin);
    24      memset(p,false,sizeof(p));
    25     gcd();
    26     while(cin>>n,n){
    27         int j=0,sum;m=0;
    28         for(int i=0;i<a;i++){
    29                 sum=0;j=i;
    30             while(sum<n){
    31                 sum+=pr[j++];
    32             }
    33             if(sum==n)
    34                 m++;
    35         }
    36         printf("%d
    ",m);
    37     }
    38     return 0;
    39 }
  • 相关阅读:
    display:table-cell,inline-block 之间的缝隙
    ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study(树状数组)
    ACM-ICPC 2018 徐州赛区网络预赛 J Maze Designer(最大生成树+LCA)
    1076 两条不相交的路径
    1107 斜率小于0的连线数量
    1112 KGold
    51nod 1110 距离之和最小V3
    1246 罐子和硬币
    1163 最高的奖励(贪心+优先队列)
    1028C:Rectangles
  • 原文地址:https://www.cnblogs.com/yoyo-sincerely/p/5028087.html
Copyright © 2011-2022 走看看